Improve Your Speed By Looking Under The Hood.

high performance engine

When it comes to improving an athlete’s speed, many trainers just stick to their preferred methods. Maybe they have a bunch of go-to speed and agility drills. Others may mostly use strength training with their athletes. For another, it may be technical track drills.

All of these can be effective and have a place in building better athletes.

However, having just one training solution for every athlete will fail many. It leaves many poorly served because, after the foundation, every athlete doesn’t have the exact same needs.

Coaches, athletes, and parents are often confused about whether they need more speed training or more weight room time. Unfortunately, too many trainers skip the actual analysis to find what’s really needed.

Formula 1 car time trial

Time Trials

To help understand why we need deeper analysis, let’s look at auto racing. I can go out to the race track and do time trials. I can see how fast we can finish a lap, what the top speed is, or how fast we can accelerate.

These are all performance measures.

We’re measuring the performance of both the car and driver.

The car has to produce engine torque, grip the surface of the track, and steer effectively.

Additionally, the driver needs the skill to properly utilize those capabilities. Without those skills, he can’t optimize the performance.

Those performance measures of time, distance, and velocity can give us insight into opportunities to improve. However, they don’t specifically tell us how to improve.

First of all, they were measures of the combined systems of the car and driver.

The times alone can’t tell us if the driver or the car is the limiting factor.

Going further, if it was the car, we still don’t know which components of the system need improvement.

speed skating start sprint
start athlete speed skater sprint race at competition

Performance Testing in Sports

In sports, we do very similar things. We test athletes on how fast they can sprint or do an agility drill. We see how high they can jump or throw an object. It is just like timing the car on the race track.

It requires the driver (like the athlete’s motor control system) to use the race car’s physical performance capabilities (like the athlete’s body) to perform the test well.

Performance testing can help us set goals, see where we can improve, and give us feedback if our training programs are successful.

However, it doesn’t necessarily tell us HOW to improve.

Improving Performance

So what do you do when you want to improve that speed on the race track? Do you jump straight in and upgrade the engine, or maybe the transmission? Maybe change the tires or the cooling system? Maybe you fire the driver and hire a new one.

Any of those may help. But without looking deeper and performing diagnostic tests, you may be wasting time and money on the wrong factor.

If we have a great car, but a poor driver, we won’t get much better by upgrading the engine torque. The driver isn’t good enough to use the existing power on the track right now. Improving the engine and power won’t change that.

On the flip side, the best driver in the world cant take a honda civic and win a professional race. The car just doesn’t have adequate mechanical capabilities to keep up.

In sports, we have to consider whether an athlete needs to improve their speed by upgrading their physical capabilities or their motor control. Coaches do this by analyzing techniques and seeing if they have the basic strength & power qualities needed.

If one of these is the clear limiting factor, then they know where to spend time and energy.

Professional car mechanic working in auto repair service.

Looking Under the Hood

If a race team wants to win they don’t stop at how the car performed on the track. The crew takes it into the garage, looks under the hood, and does diagnostics.

It is not enough to only know WHAT the car can do in terms of power or efficiency. They need to analyze HOW its being accomplished.

That’s what we do when we use Strength Diagnosis with an athlete. We are going beyond the performance tests by looking under the hood at their strength and power capabilities.

After all, there are very different types of strength needed to improve linear sprinting, change of direction, or jumping height. Even within a sprint, different types of strength influence initial acceleration versus maximum velocity sprinting.

athletic strength signature

Strength Signature

The Velocity Strength Signature is a method developed over 20+ years to identify sport-specific strength qualities. By measuring the kinetics in 5 different movements, we can quantify all six types of athletic strength.

An athlete’s unique profile across these six types of strength is what we call a Strength Signature. Just like your written signature, it is unique.

It also tells us a lot about how we can help you improve through training. By considering your specific goals, and evaluating your Strength Signature, coaches can help you target the right type of strength.

Then you can continue to train hard, but now you’re doing it smarter.

Summary

Whether it’s a race car on the track or an athlete in the gym, performance testing shows us what’s possible and how we are doing.

However, in both cases, performance testing doesn’t necessarily tell us why we are performing that way or how to improve it.

So with our race car, we look under the hood and diagnose the limitations of the car.

With athletes, we look under the hood with Strength Diagnosis to find out what types of sport-specific strength they need to improve and stay healthy.

Why Eccentric Strength Is Important For Athletes (its critical!)

Changes of direction require eccentric strength

Eccentric strength is critical for athletes because they encounter a lot of eccentric actions. These movements are both impactful to performance and often linked to non-contact injuries.

One of Six Types Of Athletic Strength

Athletes need strength to absorb eccentric overload in motions like landing, stopping, follow-through, and change of direction. Think of this type of strength as your shock absorbers and brakes.

These activities come with high levels of force, and often high levels of speed. Think about an athlete who just went up for a rebound in basketball or spike in volleyball.

After that jump, they have to absorb the forces of landing. That means controlling them so they don’t get injured, and so they are ready to go into the next action they need to make.

LEARN MORE: Athletic Strength Is More Than Weight On A Barbell

What does eccentric mean?

When we say eccentric, we are talking about motions where muscles are lengthening while still contracting. As a simple example, think of a bicep curl. When you are curling the barbell up, that’s a concentric contraction. The muscles are contracting, and your bicep is getting shorter. On the other hand, if you lower it back down slowly and don’t just let it fall, you are fighting against gravity. This is an eccentric contraction. The muscles are contracting to resist gravity but are lengthening

Eccentric strength is important for athletes when they have to absorb forces
Eccentric strength is important for athletes when they have to absorb forces. You can see the athlete above is absorbing forces on her lead leg as she slows for sprinting and lowers to get the ball.

Any athlete that needs speed on the court or field also needs brakes. Most sports involve changes of direction.

Going fast is great, but if you don’t have the brakes to stop or change direction, you’ll have a hard time using your speed.

Think of eccentric strength as brakes for an athlete. Since they often need to stop, change direction, and land, eccentric strength is important for athletes.

Eccentric Forces

High forces can be developed during these eccentric actions.

In fact, your body can produce higher forces eccentrically than concentrically. Plus, the brain uses a different motor control strategy than for the concentric motion.

So, if you aren’t training these motions, you won’t have the coordination and motor control optimized.

Strength Signature

When we perform a Strength Diagnosis for an athlete we identify the six strength types for athletes. The relative levels of these different types of strength create a profile of the athlete.

When it comes to eccentric strength, we call this quality Absorb.

Since we know eccentric strength is important for athletes, we measure it. To derive this value, an athlete is actually tested on how efficiently they can handle eccentric forces and then reuse that force to produce a subsequent explosive movement.

Training Eccentric Strength For Athletes

Absorb is trained in several ways. One is in the weight room because eccentric strength needs high levels of force to be stimulated.

Sometimes this is heavy lifts, or extending the time in the eccentric (lowering) phase of a lift. It can also be done with special equipment that focuses on the lowering phase.

Plyometrics that focus on overloading and controlling the landings is another good way to build your ability to Absorb.

Eccentric Strength Is Important For Athletes

Just like a fast car needs reliable brakes to corner well and stop, an athlete needs eccentric strength to perform well and stay safe. Developing this type of strength requires specific training with the right methods to improve it safely.

What Is Sport Specific Speed?

sport specific speed training

Everyone knows speed is an important part of performance, but what is sport specific speed?   As an athlete reaches higher levels of sport, the speed of the game increases.  However, the type of speed can also become more specific.

It doesn’t take a pro coach or biomechanist to see that sport specific speed is more than running in a straight line.

Accelerating, stopping, quickness, agility and change of direction are important parts of game speed.

Depending on the sport and position, athletes will use different speed skills including; linear sprinting, agility and multi-directional speed. How often and how far they go each time varies a lot. Still there are some foundations of speed we can begin with.

Linear Sprinting

Sprinting has two main components; acceleration and max velocity. Acceleration is speeding up rapidly, and maximum velocity is sprinting over ~75% of full speed. Since sprint distance varies from just a few yards to the length of field, athletes typically need both acceleration and max velocity skills. Science tells us that the biomechanics and technique for each are distinctly different.

Two clear differences you can see between acceleration mechanics and max velocity mechanics are; body angle and leg action.

 

Angle

Draw an imaginary line through the foot contact with the ground and the center of mass (a few inches behind your belly button), this is the Powerline. If the power line is efficient there will be a straight line that runs through the shoulders and head as well.

During acceleration the angle is smaller. Somewhere between 45°- 60° from the ground. Compared to max velocity sprinting where the powerline is nearly vertical or 90° from the ground.

Action

It’s also easy for the untrained eye to see a clear difference in the action of the legs. In max velocity mechanics the athlete uses a cyclical action, with a “butt kick” and “step-over the knee”. In acceleration efficient mechanics are more of a “piston” action with the knee punching forward and then driving backward.

Muscles and Strength

The differences in the motion and the body positions affect which muscles contribute most. Although most of the body’s muscles are always used in sprinting, some contribute more to acceleration or max velocity running.

 

Curved Runs

Not all sprinting in sports is purely linear.  Even in track and field they go straight and turn left.  

In many field and court sports you can observe athletes making curvilinear runs.  This is often the result of defenders trying to protect space or a pathway to the goal.  That results in attacking players having to attempt to get around them by accelerating or sprinting along a curved pathway.

RELATED CONTENT: Curved Running In Sports

Agility

While sprinting speed is very important, most sport aren’t a track meet. Team sports aren’t linear and elite players have great agility as well. Agility can be looked at in two key components, Quickness and Change of Direction. Sprinting speed is great, but if you cant change direction, you’re going to get burned.

Quickness

Lightning fast movements in 1-2 steps can make all the difference in reacting to an opponent or leaving one on the ground.

 These are the body fakes and quick re-positioning movements that happen in attacking and defending through-out most sports. Picture and ankle breaking move in basketball or a fast juke by the running back in football.

 Quickness requires the reactive strength to apply force to the ground quickly, and the body control/balance to make it efficient.

Change of Direction

 On the field or court the game constantly changes direction. Athletes are already moving in one direction when the play changes, then they have to slam on the brakes, and get moving a different way. Players need to change direction in fewer steps and faster than the opposition to have an advantage.

 

change of direction

When the opponent changes from going one way to another, the ball changes areas of play after the pass, or a rebound sends players scrambling after the ball. These are all cases where change of direction skill will make a difference.

To be efficient in change of direction you need great eccentric strength abilities to decelerate, power to reaccelerate and the movement mechanics to apply it at the right angles. Stability in the joints and core also ensure efficient transfer of energy, and prevention of injury.

Improving Your Sport Specific Speed

 Now that you have a clearer picture of what it means to be fast, and a little of what each means, it’s important to know how to improve it.  The Ulitmate Guide To Speed Training is a resource where you can learn all about speed training.
 
For all of our movements, we have the formula for speed. Proven by decades with elite athletes across 27 different sports. This is the biomechanics of speed, simplified.

 

The Big 4 are basically the “formula” for speed. No advanced degree in physics or neuroscience necessary.

  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

That’s what we coach. It’s true for building the foundation or for sport specific speed. (You can read more about it here)
 
This formula has all of the complexity underneath, but it‘s simple to apply and understand. It can also save you decades and help you achieve better results with your athletes. That’s why I use it.

“If you can’t explain it to a six year old, you don’t understand it yourself.” ~ Albert Einstein

 

Big Force

 You have to apply force to the ground to go somewhere. The faster you want to go the more force you have to apply.

Observing the difference in muscular development between a sprinter and a marathoner should give you a clue.

This doesn’t mean you need to be just bigger or become a powerlifter, but biomechanics research tells us very large forces have to be applied by the athlete to move fast.

The Big Force you need is developed by sprinting fast, using specific sprint and plyometric drills, and getting in the weight room. There are 6 different strength qualities we train, and focusing on Max strength, Strength-speed, and Speed-strength are keys here.

Small Time

In sports, speed counts so applying that force in a small time, while in contact with the ground, is critical.  You don’t often see the opponent saying, “sure, take all the time you need to generate that force, I’ll wait.”

Yes you need a Big Force, but you have to apply it to the ground in a (very) small time. This requires the right strength and motor control qualities. We develop those through technique drills that reinforce a small ground contact time and through plyometrics and strength training drills that develop Rate of Force Development and reactive strength, instead of Max strength or Power.

Proper Direction

Force is a vector which means it has a direction as well as quantity.  Efficient and effective movement requires not just the right amount of force, but applied in the right direction

Proper direction is achieved through the right motor pattern (technique) and the stability of the body to apply it that way. When the structures of joints, muscles and tendons aren’t up to the task, we have what we call “energy leaks.”

The motor control to create Proper Direction is developed through technical drills which teach athletes to move optimally. The stability to transfer those Big Forces comes through specific training drills, while developing strength with resistance training and in our functional strength components.

Optimal Range of Motion

Goldilocks had it right, not too much, not too little, but just right. We need optimal range of motion in our joints, muscles and tendons. In some movements we need large range of motions, and in others we need smaller. The key is that the athlete can move without restriction or compensations.

Many of our technical exercises and dynamic warm-up drills develop this range of motion. In addition we use mobility work such as self-myofascial (foam rollers, balls, etc..) in conjunction with stretching techniques or working with a tissue specialist.

Sport Specific Speed

To play your best game you need several kinds of speed. The exact mix depends on both your sport and position. However, every player needs to start with speed fundamentals before moving to sports specific speed.

By creating a foundation of speed and agility, athlete have more tools in their toolbox. As their training becomes more sport specific they have more to draw upon. Players all have strengths and weaknesses, but you can’t afford any glaring holes. As an elite player you need:

  • Acceleration
  • Maximum Velocity
  • Quickness
  • Change of Direction

You don’t’ have to leave this to chance. While you may need the right genetics to be the fastest in the world at these, through the right training you can improve. Improve both your physical attributes and your motor control and you’ll be faster.

Speed is a skill, and like any skill it can be taught.

Learn More About Improving Speed

Research Proves How Faster Sprinters Use Strength For Speed

SMU Sprint Research

Research from the world’s leading sports scientists proves that faster sprinters need strength for speed. They are able to apply more force to the ground than slower runners. Studies from institutions including Harvard University and SMU’s Locomotor Performance Laboratory have shown how these forces are the difference between faster and slower sprinters.

They’ve proven that if you want to maximize your speed, you need to apply big forces to the ground quickly. This is one aspect of strength that includes two different types of strength.

The Velocity Speed Formula has 4 main components and two of those are BIG FORCE and SMALL TIME. Now researchers have confirmed that these 2 components of the Speed Formula are a big difference between faster and slower sprinters.

RELATED: Learn Velocity’s Proven Speed Formula

Biomechanics of Sprinting

Sprinting has been studied for decades. However, most of this was done using video to analyze how sprinters moved. Using video gives you a picture of the kinematics. This is how we measure and describe motion through body position, joint angles, and movement velocity.

This kinematic research has given us a lot of useful information. Still, there is another component to the biomechanics that hasn’t been looked at much, and that’s the kinetics.

These are the forces that are used to create that motion and body position. It’s a lot harder because you need a track full of force plates and moving cameras or a specialized research treadmill. Yet, it’s critical to understand the needs of strength for speed.

Kinetics of Speed – Force

To propel your body forward, and to keep you upright, your leg has to produce a lot of force into the ground on each step. That’s what builds your momentum during acceleration phases and keeps it going during your full speed sprinting.

You create that big force, by first getting your leg up into the right position on each stride. Picture a sprinter with their front thigh up high, about parallel with the ground. Then you use the explosive strength in your glutes, quadriceps, and hamstrings to generate power and drive your foot down into the ground.

“The top sprinters have developed a wind-up and delivery mechanism to augment impact forces. Other runners do not do so.” Ken Clark, a researcher in the SMU Locomotor Performance Laboratory

https://blog.smu.edu/research/2017/01/30/new-study-connects-running-motion-to-ground-force-provides-patterns-for-any-runner/

Driving the leg down and back into the ground is going to create a big impact on each step. The peak force during that ground contact is going to be 4-5 times bodyweight when sprinting. Now imagine a 200lbs athlete, that’s 800-1000 lbs. on a single leg, each step.

Kinetics of Speed – Time

Your linear speed dictates why the big force you generated has to be applied in a small-time. The faster you sprint, the faster you need to apply that big force.

Think about it. As you sprint faster, your body is moving over the ground with greater velocity. You’re moving faster over that part of the ground under your foot. The faster you sprint; the less time your foot is in contact with the ground. That’s just simple physics.

When your foot hits the ground, it’s driving down with a lot of power. There are only 90-130 milliseconds of time to get all that force into the ground.

To realize how fast that is, take out your phone. Open the stopwatch. Try to hit “start”, then “stop” as fast as you can.
What did you get?

Most people will get between 00.12 and 00.15. Some may beat that. This should give you some perspective; it is a small-time to apply that force of 4-5 times bodyweight.

Strength For Speed and Stiffness

Now let’s combine that big force with the small time. This is the hard part, and where some athletes fail. You need the explosive strength to get the leg attacking down at the ground as hard as possible.

And you need the reactive strength and kinetic chain “stiffness” to not collapse on contact. Only when you have the reactive strength to provide the stiffness can you fully benefit from those big forces of the leg swing. This is a key part of understanding strength for speed.

Your ankle, knee or hip all have to stay “stiff” enough to apply the force of 4-5 times bodyweight and not bend or absorb it. If they cushion it like a shock absorber, some of the force is wasted.

This doesn’t mean stiff as in lack of flexibility. It means that the muscles and tendons in your lower body can hit the ground and deliver all your power without stretching or relaxing.

The Bouncing Ball Analogy

An analogy to help visualize this is to picture 2 bouncing balls. One is a bouncy, superball made of “stiff” rubber. The other is a beach ball, soft and compliant. Throw them down with as much force as possible. Which one bounces higher off the ground?

The stiffer superball bounces higher. Why? Because it stores elastic energy and applies the force back into the ground. The beach ball absorbs some of the force and doesn’t have the elastic energy to rebound.

That superball is like reactive strength. Your muscles and tendons don’t relax and absorb the force. They store elastic energy and use it to help you go faster.

“We found that the fastest athletes all do the same thing to apply the greater forces needed to attain faster speeds. They cock the knee high before driving the foot into the ground, while maintaining a stiff ankle. These actions elevate ground forces by stopping the lower leg abruptly upon impact.” Peter Weyand, director of the Locomotor Performance Lab

https://blog.smu.edu/research/2017/01/30/new-study-connects-running-motion-to-ground-force-provides-patterns-for-any-runner/

Sprinting Fast Requires Strength

The research on faster sprinters shows why you need strength for speed. And we are not just talking about the weight on a barbell.

To generate a big force with your lower leg you will need explosive strength. To apply it you need reactive strength for stiffness. The good news is that research has also shown that getting stronger generally correlates with getting faster.

You can develop these specific strength qualities by working in the weight room using traditional and Olympic lifts. You do it using plyometrics properly. Especially single leg plyometrics with an emphasis on reactive strength.

You create that stiffness building core and hip stability to transmit and control those forces. And most importantly, you develop it by sprinting with good mechanics.

We know you need strength for speed. The Velocity Speed Formula is built on science and proven in sport. The research is starting to catch up and show why it works and can help you get faster.

Selected References

  • Faster top running speeds are achieved with greater ground forces not more rapid leg movements Weyand, et. al , J Appl Physiol 89: 1991–1999, 2000.
  • Are running speeds maximized with simple-spring stance mechanics?Kenneth P. Clark, Peter G. Weyand, Journal of Applied Physiology Published 31 July 2014
  • Relationships Between Ground Reaction Impulse and Sprint Acceleration Performance in Team Sport Athletes, Kawamori, et. al, The Journal of Strength and Conditioning Research 27(3), April 2012
  • Increases in lower-body strength transfer positively to sprint performance: a systematic review with meta-analysis, Seitz, et. al., Sports Med. 2014 Dec;44(12):1693-702
  • New study connects running motion to ground force, provides patterns for any runner. SMU Research Blog, January 30, 2017. https://blog.smu.edu/research/2017/01/30/new-study-connects-running-motion-to-ground-force-provides-patterns-for-any-runner/

To the social media training gurus…

social media training gurus

Stop it! Please, just stop! 

To social media training gurus, movement ninjas, and speed wizards, in youth training;

You’re doing yourself and so many young athletes a disservice. Hurting kids. Ruining athleticism. You’re embarrassing a profession. It needs to stop.

I can’t look at social media without seeing it. The cool looking video clip with a shredded, athletic 20 year old. They’re doing this combination of fast, athletic looking movements. It is impressive.  It gets lots of likes. 

Unfortunately, it’s also a total waste of time. It’s teaching the wrong movement patterns and actually puts that young athlete at a higher risk of injury.

…but hey, it looked really cool.

training guru
hi…I’m completely unqualified, but my drills look cool on social media!

Then they start offering their “training” expertise to others and charging for it.

But, the problem is not him, or his tribe in the fantasy world of social media. It’s us in the profession and it’s the very parents being ripped off.

Sure, they can do some awesome combinations of movements, plyo drills, yoga moves, gymnastics and whatever. Looking good in little, to no clothing is a pre-requisite as well. They take great videos and selfies in the gym, at the field and places you want to be.

Maybe it’s inspirational. That’s ok. Sometimes its educational, and that’s good too.

But what about when people start listening to them and trusting them with their health or performance?

Does that person actually have an education? Are they qualified? Do they know when they aren’t qualified and to refer to a professional?

Have they put in some years of doing it, apprenticing under masters of the craft and making the mistakes we all do along the way?

All these social media training experts aren’t necessarily bad people. But we are letting too many unqualified, uneducated and inexperienced ones doing damage.

As professionals, too many of us let them get away with it. We shake our heads, or we just laugh at them behind their backs. We know that some might mean well, but they don’t see the danger.

The danger of misleading people to trust that they have real knowledge and understanding of health, fitness or performance. The time, money and effort people may waste under their direction. The violated trust of a coach to an athlete.

And worst of all, the real danger of injury caused by these gurus ignorance. That lack of understanding of biomechanics, injury, adolescent physiology.

RELATED: Discover The Secret To Building Champion Athletes

And why do parents settle for it? Sure it’s inspiring to see the picture and videos of workouts and drills. It’s hard to know how to find a good coach. But why are you trusting your kids health to this person?

Next time you encounter a social media expert, speed guru, kettlebell rockstar, or former athlete, ask them to prove they are qualified to guide your and influence your child!

I only took a weekend course, but I look good, right?

Do you just trust your kid to anyone who looks good on social media?

Would you choose your airline pilot by their awesome social media profile? “Hey, I’ve only flown a Microsoft flight simulator once before, but don’t I look good as a jumbo jet pilot? Come fly with me!”

And parents continue to feed the growing trend, by wasting their money without checking that these people know what they are talking about. More growth for the mythical social gurus and self-titled experts.

They’re all over out there.  Social media experts expounding knowledge and answers.  Yet they are still in school (if they even went) or in their first job.  They didn’t apprentice or learn their craft.  No formal training.  Do they even know what to do in an emergency or CPR.  

But hey, they did do that weekend certification that everybody passes…

When I see it, I pray.  Pray they don’t do any significant damage. That they realize when they are in over their heads.

Next time you encounter a social media training guru, speed expert, kettlebell rockstar, or former athlete, ask them to prove they are qualified to guide your and influence your child!

Not by showing you what they can do, but showing what their clients can do. Did their clients improve?

How do they handle athletes that aren’t as talented? What about ones with injury? What do they know about building a winning mindset?

Let’s raise the bar. Make them prove they are qualified to train your child.

GET THE PARENTS GUIDE TO SELECTING A PERFORMANCE COACH

Olympic Lifting for Youth Athletes: Providing the Ultimate Performance Advantage

Olympic Lifting for youth athletes

Olympic Lifting for Youth Athletes: Providing the Ultimate Performance Advantage

By Coach Tim Hanway CSCS. Sports Performance Director – Norwood
 
Every four years without exception, the world is treated to the Summer Olympic Games. The world’s best athletes assemble and compete for national honor, prestige and glory.
 
It’s Usain Bolt shattering preconceived notions of speed. Simon Biles combining all elements of strength, power, poise and grace in what can only be described as gymnastics masterclass. The level of athleticism at the Olympic Games is truly inspiring.
 
From a sports performance standpoint, coaches like myself view the Olympic Games through a different lens. Specifically, those displays of incredible athleticism stimulate our appetites and thirst for knowledge.
 

Olympic lifts are a common denominator

As coaches, we look at the performances of world-class athletes and ask ourselves; how can we reverse engineer the training process? What allowed these athletes to hit such peak form? How can we also improve own athletes’ performances?
 
I have found that there is a common denominator when looking at the training systems of all athletes. That is, the successful integration of Olympic Lifting into the athlete’s respective training programsOver the years, I have spoke with countless coaches and athletes alike. Reviewed training logs of professional, collegiate and other national level athletes. The Olympic lifts are almost always there.
 
To be successful in the highest level of any sport, athletes need to reach their maximal levels of strength, power and speedOlympic lifting for youth athletes is one strategy to achieve this.
 

Olympic Lifting For Young Athletes; Is It Good?

The beauty of Olympic lifts is that they are hands-down the single-best method for developing the many aspects of strength, power, speed and total-body athleticism.
 
However, Olympic lifts have a highly technical in nature. Sometimes they get a bad reputation from athletes, parents and even strength and conditioning coaches. They can have a perceived difficulty and/or danger.
 
 
However, when Olympic lifting is one of the safest, most versatile and effective methods of training sport-specific athleticism. When they are taught and executed properly.
 
Like so many elements of training, it can be misunderstood. Which is why the purpose of this article is to shed light on Olympic lifting.
 
For young athletes there are many benefits. Incorporating them into your training program can help you achieve newfound levels of performance and enhanced athleticism. So we are providing a general overview of these lifts.
 

The Snatch and Clean & Jerk

The Olympic lifts are broken down into two main categories. These two categories are called the “Snatch” and the “Clean & Jerk”.
 
power ouptut of olympic lifts
As portrayed in the following diagrams, the Snatch and the Clean & Jerk lifts are very similar in that in both instances, the movement ends when the bar is
successfully lifted over the athlete’s head.
 
Sports science research shows both have very large power outputs.  Much larger than classic compound strength exercises.
 

The Snatch

The Snatch, according to world renowned Performance Coach, Clive Brewer, is the “most powerful, whole-body human movement possible in sport”. It requires a tremendous explosive effort to move that bar from ground to overhead in one movement.
 
Technical breakdown of snatch olympic lift
Figure 1: Demonstration of the Various phases of the “Snatch”
 

The Clean & Jerk

The Clean & Jerk on the other hand, is a two-part exercise where the Snatch ends when the bar is successfully lifted over the athlete’s head. Although nearly identical, the position of the bar and segmented nature of the Clean & Jerk allows athletes to lift even heavier weights than when performing the Snatch.
 
However, because of the heavier weight and greater distance of bar travel, the speed of execution for the Clean & Jerk is slower.
Technical breakdown of the clean & jerk olympic lift
Figure 2: Demonstration of the Various phases of the “Clean & Jerk”
 
 
 
With that, the emphasis of power in training (i.e. speed vs. force) becomes the key element in executing the two lifts and more specifically, successfully training the body when performing the Clean & Jerk.
 

Big Force, Small-Time: The Basis of Athletic Power

 
Drilling a soccer ball 50yds from midfield. Soaring through the air to dunk a basketball. Making bone-shattering hits as an offensive lineman. Each of these illustrates the concept of power application.
 
However, as alluded to above when discussing the difference between the Snatch & Clean and the Jerk, each of the above three scenarios illustrates different types of power. To understand the difference between the three, we must first discuss what power exactly is:
 
In its simplest terms, power can be described in the following mathematical equation:
 
Power = Force x Velocity
 
“Force” in this equation can be broken down into equaling the product of Mass x Acceleration. Producing force is the application of “strength”.
 
“Velocity” on the other hand, can be described as equaling the distance an object travels divided by the time it takes to get there (Velocity = Distance/time). This is commonly called “speed”.
 
Jumping, sprinting, cutting and exploding from a three-point stance are all examples of sporting skills that each require a high degree of force generation, in the shortest time possible (Force x Velocity).
 
Hence, the mantra ‘Big Force, Small Time’ perfectly captures the essence of optimal sports performance training. Most sports movements require an optimal combination of force and velocity. to be successfully executed at the highest level.
 
 

The force-velocity curve

Either Force or Velocity can be emphasized in the above equation to maximize power output. Depending upon the task at hand, you might want one more than the other.

 
This concept is best illustrated in the following image, which depicts what is commonly known as Sports Science circles as the “Force-Velocity Curve”.
 
the force velocity curve
Figure 3: Illustration of the ‘Force Velocity Curve’
In the diagram you can see the inverse relationship between maximal force and maximal velocity. In a nutshell, the laws of physics state that when resistance or force levels go up, speed of movement goes down and vice-versa.
 
Let me illustrate this concept into force and velocity components. I often ask my athletes; “Which would you rather: Be hit by a cement truck going 10 mph or be hit by a bullet going 1,700 mph?” The look I typically get in return tells me that neither option is considered ideal.
 
In each instance, both the cement truck and fired bullet are considered extremely powerful from a physics standpoint. In the truck scenario, what makes the truck so powerful is the sheer weight and force of the truck of question. What it lacks in speed, it more than makes up for in mass.  Getting hit by a truck is very unpleasant!
 
The bullet on the other-hand, is tiny. The mass of such a small object is practically inconsequential on its own, but when traveling at such incredible speeds, represents a powerful and equally dangerous scenario.
 
In conclusion, when it comes to developing athletic performance, not all power situations are created equal. This is part of the reason Olympic lifting for youth athletes is a great way to train power.
 

The Best Athletes “Surf the Curve” In Their Training:

 
I learned the phrase “surf the curve” was one when reading an interview by Nick Grantham and Neil Parsley. They are both highly acclaimed Strength and Conditioning Coaches from the United Kingdom.
 
velocity based strength training
Velocity Sports Performance applies strength training across different parts of the force – velocity curve to optimize athletic performance.

Nick and Neil expressed that for a majority of athletes, in order to achieve optimal power training, there are times in their respective training plans where they have to train more like a “truck”, less like a “bullet” and vice-versa.

 
The reason for this is that for so many sports, both elements of power (i.e. Force and Velocity/Speed emphasis) are present when describing the skills and abilities necessary to attain peak performance.
 
Take our football player as an example: the football player making a tackle represents a skill with a high force component. Whereas, that same player exploding off the line of scrimmage to beat his man and chase the opposing quarterback, represents a skill with a high velocity component. Therefore, both elements of power (i.e. big force and big velocity) are necessary to compete at the highest level as a football lineman.
 
Strength and Conditioning Coaches describe this point of emphasis when it comes to training power as either a “Strength – Speed” or “Speed – Strength” emphasis. 
For example, let’s look at two different strength types in the same basic movement pattern. A bench press executed with explosiveness, could be considered a “Strength-Speed” exercise. Whereas a light, fast medicine ball chest throw could be considered an example of a “Speed-Strength” exercise (greater speed or velocity emphasis).
 

Olympic Lifts: Giving Athletes the Best of Both Worlds

 
Now that power has been clearly defined, and the relationship between force and velocity clearly understood, one can start to fully appreciate the ‘complete package’ of Olympic lifts.
 

Olympic lifts aren’t the only way to increase power

Let’s be clear, medicine balls, plyometrics, and speed work are also essential to overall athletic success. Anyone that has sat through my podcast of maximal speed training has heard how much I value focused, precise and biomechanically sound speed work.
 
The truth is that each of the above three classifications of exercises represent focused training strategies that are scientifically proven to maximize peak power output, especially from a speed-strength standpoint.
 
Conversely, I also love the regular incorporation of heavy, key compound lifts, including overhead and horizontal pressing movements like the military press and bench press, upper-body pulling movements and classic lower-body strength exercises.
 
What each of these broad categorizations of lifting movements have in common, is the high degrees of coordinated, muscular-strength efforts necessary to complete each of these lifts successfully.
 
However, Olympic lifts provide athletes with the best of both worlds.  To illustrate, in revisiting both the Snatch & Clean and the Jerk, one can appreciate the degrees of power necessary to navigate the bar overhead from a stationary floor position.
 
What is not captured in the static images for either the Snatch & Clean and the Jerk however, is the requisite strength, explosive power, precision, and total-body coordination necessary to successfully navigate such impressive weights from the ground to an overhead position.
 
It is only through such highly precise, coordinated muscular efforts where high levels of athletic power can be achieved to successfully attempt either of the two types of Olympic lifts.
 

Olympic lifts provide one type of sports specificity 

Arguably, from a ‘sports specificity’ standpoint, the Olympic lifts successfully capture the rapid triple-extension qualities of the ankles, knees and hips so often encountered in sports (see below images):
running
 
arm care program for baseball and softball players
 
building young athletes female goalie
 
elite training
Each Demonstrations of the rapid ‘Triple-Extension’ of the hips, ankles and knees as they relate to sport
 
Virtually all sporting actions require a forceful triple-extension of the hip, knee and ankle. Whether sprinting, cutting, making a tackle, or attempting to jump for a serve, triple-extension is there.
 
Plyometrics, speed work and heavy compound lifts, are tools that represent invaluable components of my own coaching ‘arsenal’. Utilizing a combination of these tools throughout a training plan can lead to substantial gains in performance. There is no question that even in the absence of Olympic lifting, athletes can still achieve increases in athletic power.
 

Training efficiently

Athletes and coaches have limited time and effort to spend in the weight room. The question I usually ask myself as a coach when creating a program is; what types of lifts and activities are going to give my athletes the most ‘bang for their buck’. What will give them the greatest return from their training investment in the weight room?
 
The answer is Olympic lifts. Programming olympic lifting for youth athletes combines high levels of strength, speed, power and total-body coordination. 
 
Let’s return to the key distinction between the two lifts as well as our ‘Force-Velocity’ Curve.  By nature the Snatch is considered by many coaches to be more of a ‘Speed-Strength’ exercise. Whereas the Clean & Jerk is considered more of a ‘Strength-Speed’ exercise. This due to a combination of factors which includes the bar speeds and degrees of resistance encountered in both lifts.
 
Overall, both versions of the Olympic lifts in a training program allows athletes to effectively ‘surf the curve’ in their training. These lifts rely on the successful application of high force and high speeds. It is impossible to attempt either the Snatch or Clean & Jerk slowly.
 
Unlike plyometrics or medicine ball work, Olympics lifts can have a very wide range of resistanceInstead of relying on either body weight or small, weighted implements, Olympic lifts us adjustable barbells and weight. A coach can adjust the plates in order to achieve optimal resistance levels.
 

Summary:

There are numerous benefits that strength and power training has on sports performance. Speed training, plyometrics and classic strength training exercises can all provide athletes with exceptional gains in performance and athleticism.
 
Olympic lifting for youth athletes provides athletes with the ultimate “X-Factor” when it comes to training.
 
These lifts closely mimic the force and velocity demands of sport. As a result, they allow athletes to make monumental both strength and power gains in the weight room. They are efficient. One exercise gives multiple strength benefits.
 
Still the argument persists that these movements too technical for some athletes.  The truth is that once mastered, Olympic lifts provide young athletes what’s needed.  An array of exercises and drills that transfer to on-field performance.
 
Youth athletes that can learn Olympic lifts at a young age benefit from a superior training stimulus. Their successful incorporation also adds the confidence to execute one of the most common lifting skills in the sports world.

Is Youth Strength Training Safe?

is Youth strength training safe

Youth Strength Training Safety

Is resistance training safe for youth athletes?  It’s an important question for every coach and parent.

The bad news…

You still hear the myths. Weight training will stunt your growth.  It will make athletes muscle-bound.  It is dangerous for youth athletes.

The good news…

It’s safe and effective. We’ve seen it for 20 years.  Today it’s backed by research and medical leaders.

RELATED: Strength Training Is Injury Prevention

Is weight training safe for youth?  Here are some experts answering.

The scientific and medical communities have come to a conclusion. It is that strength training is safe and beneficial for youth athletes.

Health Benefits of Resistance Training for Youth and Adolescents

Resistance training has been shown to be safe and also has a number of health benefits. It helps;

  • Body composition
  • Cardiovascular risk profile
  • Reduce body fat
  • Facilitate weight control
  • Improve insulin sensitivity
  • Strengthen bone
  • Enhancing psychosocial wellbeing

Velocity Speed Formula: Big Force

Strength training for speed

Velocity Big 4 Speed Formula
The Speed Formula is the science of speed biomechanics simplified.

Understanding strength training for speed is important for coaches and athletes.  Previously I’ve covered why the Big 4 is such an effective “formula” for speed (read it here). It’s how we analyze movement, teach and come up with drills and programs. No advanced degree in physics or neuroscience necessary. The formula is:

  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion
Let’s delve deeper and take a look at the first element; Big Force. It has driven why and how we incorporate certain drills and resistance exercises. It is basic Newtonian physics; you push the ground one way and it pushes you the opposite direction.

How Much Strength Do You Need?

It’s a good question. How much strength do you really need?
 
Observing the difference in muscular development between a sprinter and a marathoner should give you a clue. Sprinter’s have way more muscle mass. This doesn’t mean you need to just be bigger or become a powerlifter. But biomechanics research does tell us very large forces have to be applied by the athlete to move fast.
 
You need to produce a Big Force. The strength you need is developed by:
  • sprinting fast,
  • using specific sprint and plyometric drills,
  • and getting in the weight room.

What Is Strength?

For an athlete, strength means a lot more than just how much weight you can lift. There are 6 different strength qualities we train. Focusing on specific strength qualities is how we improve speed.
 
Strength is how much you can lift, right?
 
Nope.
 
How much you can lift is a great expression of some strength or power qualities. As an Olympic weightlifting coach, I’ve helped athletes go from starting the sport to be on the US National team. I love the strength and power (Strength x Speed) expressed through weightlifting.
 
Then there’s powerlifting. Squat, deadlift, bench. Many of the coaches on our staff have been competitive powerlifters as well as my friends. These feats of strength are really impressive and it’s a great expression of Max Strength.
 
Neither is the definition of strength though. They are just great examples of 2 of our 6 specific qualities. Going in-depth is beyond the scope of this writing but here are our 6 types of strength:
  1. Maximum Strength: think powerlifting and even sub max weights. It’s about force and speed is not important.
  2. Eccentric Strength: Think shock absorbers and brakes. When you land, stop, cut, etc… your muscles contract while lengthening. This is an eccentric strength action.
  3. Power (Strength-Speed): Moving fast against a larger load. Think weightlifting or football lineman pushing each other.
  4. Power (Speed- Strength): Moving fast against a light load. Throwing a baseball, jumping, throwing a punch. Moving it fast matters.
  5. Rate of Force Development: How fast you can turn on the muscles. Think of a drag racer analogy. It’s how fast they can go from 0 to speed that matters.
  6. Reactive Strength: Combine a fast & short eccentric stretch, immediately followed by RFD and you have reactive. This is the springy quick step you see in fast footwork.

What Type of Strength Do You Need?

If there are different types of strength, which help you apply a BIG FORCE into the ground? Which will help you get faster?
 
The answer lies in part on what you are trying to improve. The answer may be different if we are talking about acceleration compared to maximum velocity sprinting. And those may be different than a change of direction.

Acceleration

This is the phase where you are starting and gaining speed. During this phase, the mechanics lead to slightly longer ground contact times. This added time in contact with the ground lets you build up force to push harder. You still have only between 200 – 400 milliseconds, so Max Strength will help, but Speed-Strength is key.
 
This phase is also characterized by large horizontal and vertical forces. This means that when training strength, you need strength exercises for both pushing backward and down. A good dose of weight room basics like lunges, power cleans help. Combined with vertical and horizontal plyometrics, along with sled work, the results get better.

Maximum Velocity Mechanics

During this phase, you are upright and moving fast. Your foot needs to hit the ground with high forces but it’s not there for long. Elite sprinters are in contact less than 100 milliseconds. You need Max Strength enough to handle the high loads 1.5 – 2.5 times body weight on each leg. You also need to be able to absorb the impact and reapply force quickly. That’s Reactive Strength.
 
Since you’ve already accelerated, in this phase the forces are mostly vertical. They keep you from falling into the ground. Therefore, weight and plyometric exercises like squats, reactive hurdle jumps, and even jump rope double-unders all contribute.

Change of Direction

When changing direction, the type of strength can depend on how sharp of a cut you make. One situation is a major change of direction where you slow down and re-accelerate. This requires a lot of Eccentric Strength and Strength-Speed. On the other hand, if it’s a quick cut without slowing down or a big range of motion, then it’s more about Reactive Strength and Speed-Strength.
 
Both these are going to benefit from a mix of weight room and plyometrics. The weight room will include strength exercises and Olympic lifts for power. The plyometrics are going to need to focus on developing horizontal and lateral forces.

Technical Sprint Drills for Strength Development

There is a big misunderstanding of technical speed drills. Most people see a technical drill and naturally believe it’s to develop technique. It makes sense after all, but there is so much more.
 
Many “technique” drills in speed training are just as important to developing Big Force as the weight room. By refining an athlete’s technique, they become more efficient with the strength they have. They learn to apply it better.
 
Often many speed drills are really a plyometric exercise themselves. They require putting a lot of force into the ground, in the proper direction. They are in fact the most speed specific form of strength training there is.

Strength Training for Speed

Having good technique and good power output is key to being fast. It’s not an either/or situation, it’s an AND sitution. You need technique AND strength. In every athlete’s development, they go through stages. Sometimes their technique gets ahead of their strength, and vice versa. Make sure you stay on track by developing both and working with a knowledgeable coach who can determine if you need one or the other more.

Sleep: The Most Important Strategy for Athletes

sleep is the most important strategy for athletes

Sleep is a smart play

 
Focusing attention on sleep is a smart strategy for anyone trying to perform their best.
 
Everyone faces more threats to sleeping well than ever before.  From the rigors of your busy schedules, to added stress in life and work, and from the slumber-stealing use of technology.
 
 
Physical activity puts demand on muscles and tissues. The human body repairs itself during slumber. So it not only helps your body recover, it’s also a surefire performance booster.
 

Sleep powers performance

 
Scientific research clearly has documented the performance enhancing power of quality sleep. In the world of athletics, improving any aspect of mental and physical performance is incredibly valuable.
 
When we have to improve recovery for an athlete, we start here.  It has a wide range of benefits and the cost of missing is immense. It something everyone can be proactive and take control of.
 
If you aren’t getting sleep, then other recovery methods are just a short term fix.  It’s like putting more deodorant on, when you aren’t even taking a shower.
 
It’s just not going to make a real difference!
“Fatigue makes cowards of us all.”
– Vince Lombardi

Lack of sleep increases injuries 

 
One scientific study showed that athletes sleeping less than 6 hours per night were more likely to suffer a fatigue related injury the following day!  
 
Another study showed high school athletes who slept less than 8 hours per night has more injuries. On average, they had an injury rate of 1.7 times greater than those who slept more than 8 hours.
 
As an athlete, you can’t play if you’re on the bench with an injury.
 
For your own health and their future playing career, you need to focus on sleeping well.
 
Learn the benefits of sleep
This video highlights some of the most important ways benefits to1 athletic performance:

The effects of sleep extension on the athletic performance of collegiate basketball players 
Mah C, et al. (2011)

Ongoing study continues to show that extra sleep improves athletic performance
Mah C, et al. (2008)

The effect of partial sleep deprivation on weight-lifting performance
Reilly T, Piercy M. (1994)

Chronic lack of sleep is associated with increased sports injuries in adolescent athletes
Milewski MD, et al. (2014)

How sleep deprivation decays the mind and body
The Atlantic

Strength Training Is Injury Prevention

strength training helps prevent injury

Stay In The Game

In elite sports there is a lot of emphasis put on injury prevention.  It doesn’t matter how good you are if you are sitting on the bench, hurt.

Teams and athletes look to us to reduce their risk of injury.  We know there are many parts to injury prevention, but the foundation is often strength.

For the last 20 years, Velocity Sports Performance has known that good strength training is injury prevention.

  • Our experience with athletes in 11 Olympic Games backs it up.
  • Our experience with thousands of professional athletes backs it up.
  • A growing body of scientific research is starting to catch up.

is Youth strength training safe

RELATED:  Is Youth Strength Training Safe?