To the social media training gurus…

social media training gurus

Stop it! Please, just stop! 

To social media training gurus, movement ninjas, and speed wizards, in youth training;

You’re doing yourself and so many young athletes a disservice. Hurting kids. Ruining athleticism. You’re embarrassing a profession. It needs to stop.

I can’t look at social media without seeing it. The cool looking video clip with a shredded, athletic 20 year old. They’re doing this combination of fast, athletic looking movements. It is impressive.  It gets lots of likes. 

Unfortunately, it’s also a total waste of time. It’s teaching the wrong movement patterns and actually puts that young athlete at a higher risk of injury.

…but hey, it looked really cool.

training guru
hi…I’m completely unqualified, but my drills look cool on social media!

Then they start offering their “training” expertise to others and charging for it.

But, the problem is not him, or his tribe in the fantasy world of social media. It’s us in the profession and it’s the very parents being ripped off.

Sure, they can do some awesome combinations of movements, plyo drills, yoga moves, gymnastics and whatever. Looking good in little, to no clothing is a pre-requisite as well. They take great videos and selfies in the gym, at the field and places you want to be.

Maybe it’s inspirational. That’s ok. Sometimes its educational, and that’s good too.

But what about when people start listening to them and trusting them with their health or performance?

Does that person actually have an education? Are they qualified? Do they know when they aren’t qualified and to refer to a professional?

Have they put in some years of doing it, apprenticing under masters of the craft and making the mistakes we all do along the way?

All these social media training experts aren’t necessarily bad people. But we are letting too many unqualified, uneducated and inexperienced ones doing damage.

As professionals, too many of us let them get away with it. We shake our heads, or we just laugh at them behind their backs. We know that some might mean well, but they don’t see the danger.

The danger of misleading people to trust that they have real knowledge and understanding of health, fitness or performance. The time, money and effort people may waste under their direction. The violated trust of a coach to an athlete.

And worst of all, the real danger of injury caused by these gurus ignorance. That lack of understanding of biomechanics, injury, adolescent physiology.

RELATED: Discover The Secret To Building Champion Athletes

And why do parents settle for it? Sure it’s inspiring to see the picture and videos of workouts and drills. It’s hard to know how to find a good coach. But why are you trusting your kids health to this person?

Next time you encounter a social media expert, speed guru, kettlebell rockstar, or former athlete, ask them to prove they are qualified to guide your and influence your child!

I only took a weekend course, but I look good, right?

Do you just trust your kid to anyone who looks good on social media?

Would you choose your airline pilot by their awesome social media profile? “Hey, I’ve only flown a Microsoft flight simulator once before, but don’t I look good as a jumbo jet pilot? Come fly with me!”

And parents continue to feed the growing trend, by wasting their money without checking that these people know what they are talking about. More growth for the mythical social gurus and self-titled experts.

They’re all over out there.  Social media experts expounding knowledge and answers.  Yet they are still in school (if they even went) or in their first job.  They didn’t apprentice or learn their craft.  No formal training.  Do they even know what to do in an emergency or CPR.  

But hey, they did do that weekend certification that everybody passes…

When I see it, I pray.  Pray they don’t do any significant damage. That they realize when they are in over their heads.

Next time you encounter a social media training guru, speed expert, kettlebell rockstar, or former athlete, ask them to prove they are qualified to guide your and influence your child!

Not by showing you what they can do, but showing what their clients can do. Did their clients improve?

How do they handle athletes that aren’t as talented? What about ones with injury? What do they know about building a winning mindset?

Let’s raise the bar. Make them prove they are qualified to train your child.

GET THE PARENTS GUIDE TO SELECTING A PERFORMANCE COACH

Youth Speed Training Tips: Technical + Applied Drills

Tips for training speed in youth athletes
The Velocity Speed Formula (read more about it hereuses proven speed training drills to make athletes faster.  However, it’s much more than just drills.  How different drills are combined affects learning.  For youth speed training to carry over to the game you need to learn this tip in the video.

Velocity Speed Formula

Combining technical and applied drills is an important part of youth speed training.  It’s one way we make sure athletes can apply the speed in the game.  This is just one part of the Velocity Speed System.  It’s built on the science of biomechanics and motor learning.  Learn more about the Velocity Speed Formula

Velocity Speed Training Drills: Optimal Range of Motion

Speed training drills: optimal range of motion
The Velocity Speed Formula (read more about it hereuses proven speed training drills to make athletes faster.  Whether its elite speed training or youth speed training, the Formula always has the same 4 parts;
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

Apply Force in the OPTIMAL RANGE OF MOTION

The range of motion your limbs and joints travel through while sprinting is a Goldilocks scenario; not too big, not too small, but just right.

If the limbs are traveling through too big a range of motion you may be wasting time and energy.

If the range is too small, you wont generate the power you need.

RELATED: Sport Specific Types of Strength

Optimal range of motion is developed by acquiring good motion through stretching and mobility work combined with dynamic mobility drills.  Below we have a few of the speed training drills that help athletes develop the optimal range of motion for sprinting.

Kneeling Arm Action Drill

This drill to reinforce arm action has been around for a long time.  The reason; it still helps athlete work on understanding the arm swing range of motion while running.  One of the keys is that you want athletes using this drill to feel good spinal alignment with relaxed shoulders and neck.

Use this drill through various speeds, push faster until form, coordination or body position start to suffer.  Then back the speed down and regain the form.  Make sure the motion is from the shoulder.  No “karate-chop” actions at the elbows.

 

Fast Leg Drill

There are many useful variations of the Fast Leg speed drill and multiple benefits.  The one we are focusing on here is the range of motion.  Specifically the range of motion when the leg recovers from behind the body and the thigh lifts in front.  The higher the thigh lift, the more power the drive down and back can be.

This drill breaks up the sprinting motion so athletes can focus on the technical aspects.  As always, great core posture is important.

Velocity Speed Formula

Both of these are important speed training drills to help athletes ability to apply force in the proper direction. These drills reinforce basics physics so athletes can accelerate faster.

RELATED: Velocity Coaches Favorite Speed Drills

Velocity Speed Training Drills: Proper Direction

Speed Training Drill for Proper Direction
The Velocity Speed Formula (read more about it hereuses proven speed training drills to make athletes faster.  Whether its elite speed training or youth speed training, the Formula always has the same 4 parts;
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

Apply Force in the Proper Direction

Force is a vector which means it has a direction as well as quantity.  Efficient and effective movement requires not just the right amount of force, but applied in the right direction.

Proper direction is achieved through the right motor pattern (technique) and the stability of the body to apply it that way.  When the structures of joints, muscles and tendons aren’t up to the task, we have what we call “energy leaks.”

Below we share 2 useful drills that help you develop your PROPER DIRECTION qualities.  These drills are designed to reinforce and help the athlete self-regulate the direction they apply force to the ground.

RELATED: Sport Specific Types of Strength

Harness Resisted Sprints for Acceleration

To accelerate an athlete need to apply more force horizontally.  Thats how they increase their movement velocity. This drill reinforces horizontal force application.

The harness allows additional horizontal force to be applied to the athlete. Using a belt, it’s applied near the center of mass to be more biomechanically correct.  As the athlete feels that added force, they will tend to automatically apply force in a more horizontal direction

 

Wall Drills

This is a classic speed training drill that has survived the test of time.

Trying to drive the legs backward and push into the wall reinforces the horizontal force direction for acceleration.

To project your center of mass in the air high enough for the rope to go around twice, you need to apply a big enough force.

It’s very effective but has a problem; it get boring quickly.  So make sure you use it as a prep or reinforcement drill.  Don’t do it for a long time.  It’s also bets used in quick contrast with a drill where the athlete gets to apply that force moving and reinforce the proper direction.

Velocity Speed Formula

Both of these are important speed training drills to help athletes ability to apply force in the proper direction. These drills reinforce basics physics so athletes can accelerate faster.

RELATED: Velocity Coaches Favorite Speed Drills

Velocity Speed Training Drills: Small Time

plyometric drills for speed
The Velocity Speed Formula (read more about it hereuses proven speed training drills to make athletes faster.  Whether its elite speed training or youth speed training, the Formula always has the same 4 parts;
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

Apply Force Faster for Speed

Below we share 2 useful drills that help you develop your SMALL TIME qualities.  In essence, these are plyometric drills.  Drills where you have a ground contact that stretched your muscles, followed quickly by a contraction of those same muscles.

One of the benefits of this type of plyometric action is that parts of your muscles act like springs.  When you land they compress.  When you push they spring back and help you.

This is what we term Reactive Strength and is key for any athlete that wants to be fast.

RELATED: Sport Specific Types of Strength

Hurdle Hop Speed Training Drills

Hurdle hops are a very popular drill for speed training with good reason; they are effective.  The key is to do them well.

When your goal is to develop your reactive abilities, you need to focus on getting off the ground quick.  At the same time, you need to apply force.  Make sure you try to really project your body high into the air on each.  The speed is on the ground contact, not the movement forward.

Jump Rope Double-Unders

This is a time tested classic for foot speed.  It’s hardly new, but it works.  It should be a fundamental piece of every youth speed training program.  It’s basically a plyometric drill for speed.

To project your center of mass in the air high enough for the rope to go around twice, you need to apply a big enough force.

If you don’t want to get smacked with the rope, you need to apply that force quickly.

Double-unders are what we call a “self-limiting drill’.  This means that you really can’t perform it with bad technique.  Maybe you can get a few in without doing it well, but to string them together you need good form.  You will be in the proper body position, have the right range of motion and have a small time on the ground.

Velocity Speed Formula

Both of these are important speed training drills to develop an athletes ability to apply force quickly. They are great plyometric drills that work.   Execute them explosively and with great body position to be effective. If you perform them well and often, you’ll see the results transfer to game speed.

Velocity Speed Training Drills: Big Force

speed training drills
The Velocity Speed Formula (read more about it hereuses proven speed training drills to make athletes faster.  Whether its elite speed training or youth speed training, the Formula always has the same 4 parts;
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

Getting Stronger for Speed

This article is focused on 2 important drills that help to develop your BIG FORCE qualities.  Although these are not weight room drills, strength training for speed development is important.  To be fast, athletes need to train in the weight room and do it properly.

These drills also develop some of the strength qualities you need to improve your speed.  They are very specific to building strength for speed.  They build speed strength and have a high carryover from training to application.

Box Blast Exercise

The Box Blast is a speed training drill that lets you focus on maximum power.  The basic alignment of the limbs and torso is similar to the acceleration phase of sprinting.  Most importantly, the muscle motion is a piston-like action which we observe the acceleration phase.

Heavy Sled Runs

This is another greater drill that is highly specific to strength for speed.  Speed training drills like this need to be executed with great form and body alignment.

Velocity Speed Formula

Both of these are important speed training drills to develop the force production capabilities of athletes.  Execute them explosively and with great body position to be effective. If you perform them well and often, you’ll the results transfer to game speed.

Velocity Speed Formula: Big Force

Strength training for speed

Velocity Big 4 Speed Formula
The Speed Formula is the science of speed biomechanics simplified.

Understanding strength training for speed is important for coaches and athletes.  Previously I’ve covered why the Big 4 is such an effective “formula” for speed (read it here). It’s how we analyze movement, teach and come up with drills and programs. No advanced degree in physics or neuroscience necessary. The formula is:

  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion
Let’s delve deeper and take a look at the first element; Big Force. It has driven why and how we incorporate certain drills and resistance exercises. It is basic Newtonian physics; you push the ground one way and it pushes you the opposite direction.

How Much Strength Do You Need?

It’s a good question. How much strength do you really need?
 
Observing the difference in muscular development between a sprinter and a marathoner should give you a clue. Sprinter’s have way more muscle mass. This doesn’t mean you need to just be bigger or become a powerlifter. But biomechanics research does tell us very large forces have to be applied by the athlete to move fast.
 
You need to produce a Big Force. The strength you need is developed by:
  • sprinting fast,
  • using specific sprint and plyometric drills,
  • and getting in the weight room.

What Is Strength?

For an athlete, strength means a lot more than just how much weight you can lift. There are 6 different strength qualities we train. Focusing on specific strength qualities is how we improve speed.
 
Strength is how much you can lift, right?
 
Nope.
 
How much you can lift is a great expression of some strength or power qualities. As an Olympic weightlifting coach, I’ve helped athletes go from starting the sport to be on the US National team. I love the strength and power (Strength x Speed) expressed through weightlifting.
 
Then there’s powerlifting. Squat, deadlift, bench. Many of the coaches on our staff have been competitive powerlifters as well as my friends. These feats of strength are really impressive and it’s a great expression of Max Strength.
 
Neither is the definition of strength though. They are just great examples of 2 of our 6 specific qualities. Going in-depth is beyond the scope of this writing but here are our 6 types of strength:
  1. Maximum Strength: think powerlifting and even sub max weights. It’s about force and speed is not important.
  2. Eccentric Strength: Think shock absorbers and brakes. When you land, stop, cut, etc… your muscles contract while lengthening. This is an eccentric strength action.
  3. Power (Strength-Speed): Moving fast against a larger load. Think weightlifting or football lineman pushing each other.
  4. Power (Speed- Strength): Moving fast against a light load. Throwing a baseball, jumping, throwing a punch. Moving it fast matters.
  5. Rate of Force Development: How fast you can turn on the muscles. Think of a drag racer analogy. It’s how fast they can go from 0 to speed that matters.
  6. Reactive Strength: Combine a fast & short eccentric stretch, immediately followed by RFD and you have reactive. This is the springy quick step you see in fast footwork.

What Type of Strength Do You Need?

If there are different types of strength, which help you apply a BIG FORCE into the ground? Which will help you get faster?
 
The answer lies in part on what you are trying to improve. The answer may be different if we are talking about acceleration compared to maximum velocity sprinting. And those may be different than a change of direction.

Acceleration

This is the phase where you are starting and gaining speed. During this phase, the mechanics lead to slightly longer ground contact times. This added time in contact with the ground lets you build up force to push harder. You still have only between 200 – 400 milliseconds, so Max Strength will help, but Speed-Strength is key.
 
This phase is also characterized by large horizontal and vertical forces. This means that when training strength, you need strength exercises for both pushing backward and down. A good dose of weight room basics like lunges, power cleans help. Combined with vertical and horizontal plyometrics, along with sled work, the results get better.

Maximum Velocity Mechanics

During this phase, you are upright and moving fast. Your foot needs to hit the ground with high forces but it’s not there for long. Elite sprinters are in contact less than 100 milliseconds. You need Max Strength enough to handle the high loads 1.5 – 2.5 times body weight on each leg. You also need to be able to absorb the impact and reapply force quickly. That’s Reactive Strength.
 
Since you’ve already accelerated, in this phase the forces are mostly vertical. They keep you from falling into the ground. Therefore, weight and plyometric exercises like squats, reactive hurdle jumps, and even jump rope double-unders all contribute.

Change of Direction

When changing direction, the type of strength can depend on how sharp of a cut you make. One situation is a major change of direction where you slow down and re-accelerate. This requires a lot of Eccentric Strength and Strength-Speed. On the other hand, if it’s a quick cut without slowing down or a big range of motion, then it’s more about Reactive Strength and Speed-Strength.
 
Both these are going to benefit from a mix of weight room and plyometrics. The weight room will include strength exercises and Olympic lifts for power. The plyometrics are going to need to focus on developing horizontal and lateral forces.

Technical Sprint Drills for Strength Development

There is a big misunderstanding of technical speed drills. Most people see a technical drill and naturally believe it’s to develop technique. It makes sense after all, but there is so much more.
 
Many “technique” drills in speed training are just as important to developing Big Force as the weight room. By refining an athlete’s technique, they become more efficient with the strength they have. They learn to apply it better.
 
Often many speed drills are really a plyometric exercise themselves. They require putting a lot of force into the ground, in the proper direction. They are in fact the most speed specific form of strength training there is.

Strength Training for Speed

Having good technique and good power output is key to being fast. It’s not an either/or situation, it’s an AND sitution. You need technique AND strength. In every athlete’s development, they go through stages. Sometimes their technique gets ahead of their strength, and vice versa. Make sure you stay on track by developing both and working with a knowledgeable coach who can determine if you need one or the other more.

How To Jump Higher and Hit the Volleyball Harder

How to jump higher

Just about every volleyball player wants to know how to jump higher and hit the ball harder. The best volleyball players have a huge jump and a whip of an arm swing to hit balls through the floor so its understandable.

Technique is always going to be the foundation to success and that comes from hours of on the court.  Still, there is more you can do to get that explosive vertical jump.

This video demonstrates two exercises every volleyball player should include into their workouts to help them dominate on the court or beach.  Coach Rett Larsen should know what he talking about.  He was the performance coach for the Gold Medal team in Womens Volleyball at the 2016 Rio Olympics!

 

Big 4 Speed Formula Infographic

Velocity Speed Formula

Velocity’s Speed Formula is proven to get results for athletes at all levels of sport.  Developed by World Famous Track Coach Loren Seagrave, it’s used in elite sports around the world to make sure athletes get faster.

While it appears simple, it’s based on complex biomechanics and motor control theory.  By improving these 4 elements, you can improve your speed too.

To go more in depth and learn more check out: Velocity’s Big 4 Speed Formula

Velocity Big 4 Speed Formula

Check out these drills that work on “Big Force”.

You need to know: strength is more than just weight on a barbell

Types of Strength
When you speak about strength or being strong, what do you imagine? An athlete hoisting a barbell loaded with heavy weight in a Squat or Bench Press? How about an Olympic weightlifter explosively moving 400 pounds from the floor to over his head in a single movement?
 
These types of things are often considered “strong,” but what about other sporting actions? How about sprinting at full speed, jumping high, or throwing and kicking?  Most people become unsure whether or how strength is part of these movements.

Defining Strength

What is strength in general and specifically for athletes?  Strength is all about physics, and we are talking about Newton’s 2nd Law of Motion: in a nutshell, Force is equal to Mass multiplied by Acceleration.
 
Strength is a way of talking about the application of force. An athlete can apply force to the ground, to an opponent, to a ball or other piece of sports equipment, or even internally to his or her own body.

Mass & Magnitude

The mass in this equation is what’s being moved. As an athlete that could be things like:
  • a ball or stick in your hands, to
  • your own body weight (jumping, sprinting and cutting)
  • a 300-pound linemen
  • 500 pounds on a barbell

Acceleration and Time

One thing most people recognize is that in sports, doing things quicker is usually an advantage. Athletes don’t have unlimited time to apply force.
 
Acceleration is how fast something increases its speed. The faster the acceleration, and thus the speed, the shorter the time.
 
In sprinting or agility, your foot is in contact with the ground for a limited time. In jumping, there is limited time, and doing it faster than your opponent can be key.  When throwing or kicking a ball or swinging a racket, bat or stick, you want it moving as fast as possible.
 
Speed of movement matters.

Muscle Action

In physics, force is what we call a “vector.” This means it has a magnitude (how much?) and a direction (which way?). Direction matters because forces can be applied in different directions for different effects.
 
One thing to consider about direction is whether the muscle is lengthening or shortening during the contraction. When it’s contracting and getting shorter (e.g., bringing the bar up in a Bicep Curl), it’s called a “concentric” action.
 
If you’re applying force while the muscle lengthens (e.g., while slowly lowering the bar in the 2nd half of the Bicep Curl), it’s called an “eccentric” action.
 
Types of muscle contractions:
  • CONCENTRIC = Shortening
  • ECCENTRIC = Lengthening
Eccentric and concentric strength are not the same. The same muscles may be used, the same structures and contractile proteins, and the same lints moved. Yet, the brain uses different motor control strategies. For the same action concentrically or eccentrically the motor control is different.

Physiology & Motor Control

Another important thing to understand about strength for athletes is where it comes from.  Often people equate strength with bigger muscles. This is for good reason, because they are related, although not perfectly and not for all types.
 
Generating force with your body is a combination of the structure of your muscles (size and biological content) and your neuromuscular control. The muscle is your engine to develop horsepower, but your brain is the driver that decides how hard you push the pedal.

Sport-Specific Strength

When we analyze an athlete in his or her sport, we observe various forms of movement. Speed, agility, jumping, throwing, kicking, hitting, twisting, landing and so on are movement caused by how an athlete generates force.
 
It follows that all types of athletic movement are based on how you generate and apply strength.
 
Still, how can everything be about strength? Is what your muscles do squatting a full barbell different from what they do when you throw a baseball that only weighs ounces?
 
The answer to understanding strength is actually composed of different combinations of Newton’s 2nd Law. Force = Mass multiplied by Acceleration

Playing with the Equation

In different movements we manipulate the 3 parts of the equation—Force, Mass and Acceleration (Speed & Time). The we consider the direction of contraction (eccentric or concentric). Now we have a way to analyze sports movements and strength types.
 
We use this movement-based approach to simplify complex biomechanics into 6 specific types of strength.

6 Types of Strength

Max Strength

This is the basic capability of the muscle to produce a forceful contraction. In application it also involves coordinating multiple muscle groups across multiple joints. The amount of force that can be generated regardless of the time it takes to develop and apply it is called max strength. This is what we call this type of strength even when he or she is under sub-maximal loads.
Maximum strength
Using a car analogy, imagine a big industrial dump truck. It may not move fast, but it can move big loads.

Eccentric Strength

As mentioned before, motor control is different if the action is concentric or eccentric. The capacity to develop high levels of eccentric force is key in sports. Actions such as landing from a jump, stopping, changing direction, winding up to throw a ball and swinging a bat are all eccentric in nature.
When we come to cars, think brakes.  Eccentric strength is like having great brakes on a car to handle those high speeds. An F1 racer has to have great brakes so he or she can go into turns as fast as possible before braking.

Strength-Speed Power

Most sports applications of force involves doing it quickly. Faster is usually better. This is where power comes in. Power is equal to the velocity times the force. Increasing either force or the speed its applied will lead to more power.
strength speed
When an athlete applies force rapidly to a larger load (e.g., blocking another lineman or pushing a bobsled), it’s what we term Strength-Speed Power. “Strength” is first in the name because it’s the bigger component in generating the power. This is like a NASCAR racer who can apply a lot of torque (force), moving the car even at high speeds.

Speed-Strength Power

Here it’s the “speed” of movement (or short time of force application) that is the larger factor in generating the power. Think of an athlete swinging a bat, throwing a ball, or applying force to the ground during high velocity sprinting.
The racing analogy is more akin to motorcycle racing—still applying force at high speeds (like NASCAR), but against much lighter loads.

Rate of Force Development

This is the drag racer. In a drag race, the goal is to go from 0 mph to full speed in as little time as possible. This is the same quality that creates quickness in an athlete. Rapid movement of the limbs, a quick release of the ball throwing or a shot in hockey, fast feet for soccer. Being able to rapidly generate force, regardless of whether the force level is high is known as Rate of Force Development.
Rate of Force Development
A drag racer coming off the line and getting up to speed as fast as possible is a good car analogy.

Reactive Strength

This one’s a combo. It’s a fast eccentric action coupled with a high RFD force. Think of rapid footwork, or a quick step to change direction and juke an opponent. Or the second quick jump when a basketball player comes down and goes back up quickly to get a rebound.
We use a motocross bike as the analogy. Because it has high Rate of Force Development with eccentric-type landings of bumps that gives it that “springy” quality.

Developing Strength that’s Functional

At the end of the day, athletes want the type of strength that will help them perform at the highest level and gives them the resilience to stay healthy.
 
Every athlete needs a base across all six types of strength. While it seems to make sense to go straight to the specific type of strength for your sport, it’s not the best strategy.
 
Doing that actually limits development and long term potential. During early stages of strength training, a broad base of strength is important. Even at the elite levels of sport, athletes mix strength types during different parts of the year.
 
As you progress in your development and level of competition, you begin to focus on the specific qualities. The strength types more important to your sport, your position and even your individual genetics and style of play.
 
Strength is much more than how much you can lift on the barbell.