Olympic Lifting for Youth Athletes: Providing the Ultimate Performance Advantage

Olympic Lifting for youth athletes

Olympic Lifting for Youth Athletes: Providing the Ultimate Performance Advantage

By Coach Tim Hanway CSCS. Sports Performance Director – Norwood
 
Every four years without exception, the world is treated to the Summer Olympic Games. The world’s best athletes assemble and compete for national honor, prestige and glory.
 
It’s Usain Bolt shattering preconceived notions of speed. Simon Biles combining all elements of strength, power, poise and grace in what can only be described as gymnastics masterclass. The level of athleticism at the Olympic Games is truly inspiring.
 
From a sports performance standpoint, coaches like myself view the Olympic Games through a different lens. Specifically, those displays of incredible athleticism stimulate our appetites and thirst for knowledge.
 

Olympic lifts are a common denominator

As coaches, we look at the performances of world-class athletes and ask ourselves; how can we reverse engineer the training process? What allowed these athletes to hit such peak form? How can we also improve own athletes’ performances?
 
I have found that there is a common denominator when looking at the training systems of all athletes. That is, the successful integration of Olympic Lifting into the athlete’s respective training programsOver the years, I have spoke with countless coaches and athletes alike. Reviewed training logs of professional, collegiate and other national level athletes. The Olympic lifts are almost always there.
 
To be successful in the highest level of any sport, athletes need to reach their maximal levels of strength, power and speedOlympic lifting for youth athletes is one strategy to achieve this.
 

Is Olympic Lifting For Young Athletes; Is It Good?

The beauty of Olympic lifts is that they are hands-down the single-best method for developing the many aspects of strength, power, speed and total-body athleticism.
 
However, Olympic lifts have a highly technical in nature. Sometimes they get a bad reputation from athletes, parents and even strength and conditioning coaches. They can have a perceived difficulty and/or danger.
 
However, when Olympic lifting is one of the safest, most versatile and effective methods of training sport-specific athleticism. When they are taught and executed properly.
 
Like so many elements of training, it can be misunderstood. Which is why the purpose of this article is to shed light on Olympic lifting.
 
For young athletes there are many benefits. Incorporating them into your training program can help you achieve newfound levels of performance and enhanced athleticism. So we are providing a general overview of these lifts.
 

The Snatch and Clean & Jerk

The Olympic lifts are broken down into two main categories. These two categories are called the “Snatch” and the “Clean & Jerk”.
 
power ouptut of olympic liftsAs portrayed in the following diagrams, the Snatch and the Clean & Jerk lifts are very similar in that in both instances, the movement ends when the bar is successfully lifted over the athlete’s head.
Sports science research shows both have very large power outputs.  Much larger than classic compound strength exercises.

The Snatch

The Snatch, according to world renowned Performance Coach, Clive Brewer, is the “most powerful, whole-body human movement possible in sport”. It requires a tremendous explosive effort to move that bar from ground to overhead in one movement.
Technical breakdown of snatch olympic lift
Figure 1: Demonstration of the Various phases of the “Snatch”

The Clean & Jerk

The Clean & Jerk on the other hand, is a two-part exercise where the Snatch ends when the bar is successfully lifted over the athlete’s head. Although nearly identical, the position of the bar and segmented nature of the Clean & Jerk allows athletes to lift even heavier weights than when performing the Snatch.
 
However, because of the heavier weight and greater distance of bar travel, the speed of execution for the Clean & Jerk is slower.
Technical breakdown of the clean & jerk olympic lift
Figure 2: Demonstration of the Various phases of the “Clean & Jerk”
With that, the emphasis of power in training (i.e. speed vs. force) becomes the key element in executing the two lifts and more specifically, successfully training the body when performing the Clean & Jerk.
 

Big Force, Small-Time: The Basis of Athletic Power

 
Drilling a soccer ball 50yds from midfield. Soaring through the air to dunk a basketball. Making bone-shattering hits as an offensive lineman. Each of these illustrates the concept of power application.
 
However, as alluded to above when discussing the difference between the Snatch & Clean and the Jerk, each of the above three scenarios illustrates different types of power. To understand the difference between the three, we must first discuss what power exactly is:
 
In its simplest terms, power can be described in the following mathematical equation:
 
Power = Force x Velocity
 
“Force” in this equation can be broken down into equaling the product of Mass x Acceleration. Producing force is the application of “strength”.
 
“Velocity” on the other hand, can be described as equaling the distance an object travels divided by the time it takes to get there (Velocity = Distance/time). This is commonly called “speed”.
 
Jumping, sprinting, cutting and exploding from a three-point stance are all examples of sporting skills that each require a high degree of force generation, in the shortest time possible (Force x Velocity).
 
Hence, the mantra ‘Big Force, Small Time’ perfectly captures the essence of optimal sports performance training. Most sports movements require an optimal combination of force and velocity. to be successfully executed at the highest level.
 

The force-velocity curve

Either Force or Velocity can be emphasized in the above equation to maximize power output. Depending upon the task at hand, you might want one more than the other.

 
This concept is best illustrated in the following image, which depicts what is commonly known as Sports Science circles as the “Force-Velocity Curve”.
 
the force velocity curve
Figure 3: Illustration of the ‘Force Velocity Curve’
In the diagram you can see the inverse relationship between maximal force and maximal velocity. In a nutshell, the laws of physics state that when resistance or force levels go up, speed of movement goes down and vice-versa.
 
Let me illustrate this concept into force and velocity components. I often ask my athletes; “Which would you rather: Be hit by a cement truck going 10 mph or be hit by a bullet going 1,700 mph?” The look I typically get in return tells me that neither option is considered ideal.
 
In each instance, both the cement truck and fired bullet are considered extremely powerful from a physics standpoint. In the truck scenario, what makes the truck so powerful is the sheer weight and force of the truck of question. What it lacks in speed, it more than makes up for in mass.  Getting hit by a truck is very unpleasant!
 
The bullet on the other-hand, is tiny. The mass of such a small object is practically inconsequential on its own, but when traveling at such incredible speeds, represents a powerful and equally dangerous scenario.
 
In conclusion, when it comes to developing athletic performance, not all power situations are created equal. This is part of the reason Olympic lifting for youth athletes is a great way to train power.
 

The Best Athletes “Surf the Curve” In Their Training:

 
I learned the phrase “surf the curve” was one when reading an interview by Nick Grantham and Neil Parsley. They are both highly acclaimed Strength and Conditioning Coaches from the United Kingdom.
 
velocity based strength training
Velocity Sports Performance applies strength training across different parts of the force – velocity curve to optimize athletic performance.

Nick and Neil expressed that for a majority of athletes, in order to achieve optimal power training, there are times in their respective training plans where they have to train more like a “truck”, less like a “bullet” and vice-versa.

 
The reason for this is that for so many sports, both elements of power (i.e. Force and Velocity/Speed emphasis) are present when describing the skills and abilities necessary to attain peak performance.
 
Take our football player as an example: the football player making a tackle represents a skill with a high force component. Whereas, that same player exploding off the line of scrimmage to beat his man and chase the opposing quarterback, represents a skill with a high velocity component. Therefore, both elements of power (i.e. big force and big velocity) are necessary to compete at the highest level as a football lineman.
 
Strength and Conditioning Coaches describe this point of emphasis when it comes to training power as either a “Strength – Speed” or “Speed – Strength” emphasis. 
For example, let’s look at two different strength types in the same basic movement pattern. A bench press executed with explosiveness, could be considered a “Strength-Speed” exercise. Whereas a light, fast medicine ball chest throw could be considered an example of a “Speed-Strength” exercise (greater speed or velocity emphasis).
 

Olympic Lifts: Giving Athletes the Best of Both Worlds

 
Now that power has been clearly defined, and the relationship between force and velocity clearly understood, one can start to fully appreciate the ‘complete package’ of Olympic lifts.
 

Olympic lifts aren’t the only way to increase power

Let’s be clear, medicine balls, plyometrics, and speed work are also essential to overall athletic success. Anyone that has sat through my podcast of maximal speed training has heard how much I value focused, precise and biomechanically sound speed work.
 
The truth is that each of the above three classifications of exercises represent focused training strategies that are scientifically proven to maximize peak power output, especially from a speed-strength standpoint.
 
Conversely, I also love the regular incorporation of heavy, key compound lifts, including overhead and horizontal pressing movements like the military press and bench press, upper-body pulling movements and classic lower-body strength exercises.
 
What each of these broad categorizations of lifting movements have in common, is the high degrees of coordinated, muscular-strength efforts necessary to complete each of these lifts successfully.
However, Olympic lifts provide athletes with the best of both worlds.  To illustrate, in revisiting both the Snatch & Clean and the Jerk, one can appreciate the degrees of power necessary to navigate the bar overhead from a stationary floor position.
 
What is not captured in the static images for either the Snatch & Clean and the Jerk however, is the requisite strength, explosive power, precision, and total-body coordination necessary to successfully navigate such impressive weights from the ground to an overhead position.
 
It is only through such highly precise, coordinated muscular efforts where high levels of athletic power can be achieved to successfully attempt either of the two types of Olympic lifts.

Olympic lifts provide one type of sports specificity 

Arguably, from a ‘sports specificity’ standpoint, the Olympic lifts successfully capture the rapid triple-extension qualities of the ankles, knees and hips so often encountered in sports (see below images):
running  
arm care program for baseball and softball players building young athletes female goalie elite training
Each Demonstrations of the rapid ‘Triple-Extension’ of the hips, ankles and knees as they relate to sport
 
Virtually all sporting actions require a forceful triple-extension of the hip, knee and ankle. Whether sprinting, cutting, making a tackle, or attempting to jump for a serve, triple-extension is there.
 
Plyometrics, speed work and heavy compound lifts, are tools that represent invaluable components of my own coaching ‘arsenal’. Utilizing a combination of these tools throughout a training plan can lead to substantial gains in performance. There is no question that even in the absence of Olympic lifting, athletes can still achieve increases in athletic power.
 

Training efficiently

Athletes and coaches have limited time and effort to spend in the weight room. The question I usually ask myself as a coach when creating a program is; what types of lifts and activities are going to give my athletes the most ‘bang for their buck’. What will give them the greatest return from their training investment in the weight room?
 
The answer is Olympic lifts. Programming olympic lifting for youth athletes combines high levels of strength, speed, power and total-body coordination. 
 
Let’s return to the key distinction between the two lifts as well as our ‘Force-Velocity’ Curve.  By nature the Snatch is considered by many coaches to be more of a ‘Speed-Strength’ exercise. Whereas the Clean & Jerk is considered more of a ‘Strength-Speed’ exercise. This due to a combination of factors which includes the bar speeds and degrees of resistance encountered in both lifts.
 
Overall, both versions of the Olympic lifts in a training program allows athletes to effectively ‘surf the curve’ in their training. These lifts rely on the successful application of high force and high speeds. It is impossible to attempt either the Snatch or Clean & Jerk slowly.
 
Unlike plyometrics or medicine ball work, Olympics lifts can have a very wide range of resistanceInstead of relying on either body weight or small, weighted implements, Olympic lifts us adjustable barbells and weight. A coach can adjust the plates in order to achieve optimal resistance levels.
 

Summary:

There are numerous benefits that strength and power training has on sports performance. Speed training, plyometrics and classic strength training exercises can all provide athletes with exceptional gains in performance and athleticism.
 
Olympic lifting for youth athletes provides athletes with the ultimate “X-Factor” when it comes to training.
 
These lifts closely mimic the force and velocity demands of sport. As a result, they allow athletes to make monumental both strength and power gains in the weight room. They are efficient. One exercise gives multiple strength benefits.
 
Still the argument persists that these movements too technical for some athletes.  The truth is that once mastered, Olympic lifts provide young athletes what’s needed.  An array of exercises and drills that transfer to on-field performance.
 
Youth athletes that can learn Olympic lifts at a young age benefit from a superior training stimulus. Their successful incorporation also adds the confidence to execute one of the most common lifting skills in the sports world.

Is Youth Strength Training Safe?

is Youth strength training safe

Youth Strength Training Safety

Is resistance training safe for youth athletes?  It’s an important question for every coach and parent.

The bad news…

You still hear it the myths. Weight training will stunt your growth.  It will make athletes muscle bound.  It is dangerous for youth athletes.

The good news…

It’s safe and effective. We’ve seen it for 20 years.  Today it’s backed by research and medical leaders.

Health Benefits of Resistance Training for Youth and Adolescents

Resistance training has been show to be safe and also have a number of health benefits. It helps;

  • Body composition
  • Cardiovascular risk profile
  • Reduce body fat
  • Facilitate weight control
  • Improve insulin sensitivity
  • Strengthen bone
  • Enhancing psychosocial wellbeing

RELATED: Strength Training Is Injury Prevention

Is weight training safe for youth?  Here’s some experts answering.

The scientific and medical communities have come to a conclusion. It is that strength training is safe and beneficial for youth athletes.

  • American Academy of Pediatrics
  • American College of Sports Medicine
  • National Strength and Conditioning Association

Velocity Speed Formula: Big Force

Strength training for speed
Velocity Big 4 Speed Formula
The Speed Formula is the science of speed biomechanics simplified.

Understanding strength training for speed is important for coaches and athletes.  Previously I’ve covered why the Big 4 is such an effective “formula” for speed (read it here). It’s how we analyze movement, teach and come up with drills and programs. No advanced degree in physics or neuroscience necessary. The formula is:

  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion
Let’s delve deeper and take a look at the first element; Big Force. It has driven why and how we incorporate certain drills and resistance exercises. It is basic Newtonian physics; you push the ground one way and it pushes you the opposite direction.

How Much Strength Do You Need?

It’s a good question. How much strength do you really need?
 
Observing the difference in muscular development between a sprinter and a marathoner should give you a clue. Sprinter’s have way more muscle mass. This doesn’t mean you need to just be bigger or become a powerlifter. But biomechanics research does tell us very large forces have to be applied by the athlete to move fast.
 
You need to produce a Big Force. The strength you need is developed by:
  • sprinting fast,
  • using specific sprint and plyometric drills,
  • and getting in the weight room.

What Is Strength?

For an athlete, strength means a lot more than just how much weight you can lift. There are 6 different strength qualities we train. Focusing on specific strength qualities is how we improve speed.
 
Strength is how much you can lift, right?
 
Nope.
 
How much you can lift is a great expression of some strength or power qualities. As an Olympic weightlifting coach, I’ve helped athletes go from starting the sport to be on the US National team. I love the strength and power (Strength x Speed) expressed through weightlifting.
 
Then there’s powerlifting. Squat, deadlift, bench. Many of the coaches on our staff have been competitive powerlifters as well as my friends. These feats of strength are really impressive and it’s a great expression of Max Strength.
 
Neither is the definition of strength though. They are just great examples of 2 of our 6 specific qualities. Going in-depth is beyond the scope of this writing but here are our 6 types of strength:
  1. Maximum Strength: think powerlifting and even sub max weights. It’s about force and speed is not important.
  2. Eccentric Strength: Think shock absorbers and brakes. When you land, stop, cut, etc… your muscles contract while lengthening. This is an eccentric strength action.
  3. Power (Strength-Speed): Moving fast against a larger load. Think weightlifting or football lineman pushing each other.
  4. Power (Speed- Strength): Moving fast against a light load. Throwing a baseball, jumping, throwing a punch. Moving it fast matters.
  5. Rate of Force Development: How fast you can turn on the muscles. Think of a drag racer analogy. It’s how fast they can go from 0 to speed that matters.
  6. Reactive Strength: Combine a fast & short eccentric stretch, immediately followed by RFD and you have reactive. This is the springy quick step you see in fast footwork.

What Type of Strength Do You Need?

If there are different types of strength, which help you apply a BIG FORCE into the ground? Which will help you get faster?
 
The answer lies in part on what you are trying to improve. The answer may be different if we are talking about acceleration compared to maximum velocity sprinting. And those may be different than a change of direction.

Acceleration

This is the phase where you are starting and gaining speed. During this phase, the mechanics lead to slightly longer ground contact times. This added time in contact with the ground lets you build up force to push harder. You still have only between 200 – 400 milliseconds, so Max Strength will help, but Speed-Strength is key.
 
This phase is also characterized by large horizontal and vertical forces. This means that when training strength, you need strength exercises for both pushing backward and down. A good dose of weight room basics like lunges, power cleans help. Combined with vertical and horizontal plyometrics, along with sled work, the results get better.

Maximum Velocity Mechanics

During this phase, you are upright and moving fast. Your foot needs to hit the ground with high forces but it’s not there for long. Elite sprinters are in contact less than 100 milliseconds. You need Max Strength enough to handle the high loads 1.5 – 2.5 times body weight on each leg. You also need to be able to absorb the impact and reapply force quickly. That’s Reactive Strength.
 
Since you’ve already accelerated, in this phase the forces are mostly vertical. They keep you from falling into the ground. Therefore, weight and plyometric exercises like squats, reactive hurdle jumps, and even jump rope double-unders all contribute.

Change of Direction

When changing direction, the type of strength can depend on how sharp of a cut you make. One situation is a major change of direction where you slow down and re-accelerate. This requires a lot of Eccentric Strength and Strength-Speed. On the other hand, if it’s a quick cut without slowing down or a big range of motion, then it’s more about Reactive Strength and Speed-Strength.
 
Both these are going to benefit from a mix of weight room and plyometrics. The weight room will include strength exercises and Olympic lifts for power. The plyometrics are going to need to focus on developing horizontal and lateral forces.

Technical Sprint Drills for Strength Development

There is a big misunderstanding of technical speed drills. Most people see a technical drill and naturally believe it’s to develop technique. It makes sense after all, but there is so much more.
 
Many “technique” drills in speed training are just as important to developing Big Force as the weight room. By refining an athlete’s technique, they become more efficient with the strength they have. They learn to apply it better.
 
Often many speed drills are really a plyometric exercise themselves. They require putting a lot of force into the ground, in the proper direction. They are in fact the most speed specific form of strength training there is.

Strength Training for Speed

Having good technique and good power output is key to being fast. It’s not an either/or situation, it’s an AND sitution. You need technique AND strength. In every athlete’s development, they go through stages. Sometimes their technique gets ahead of their strength, and vice versa. Make sure you stay on track by developing both and working with a knowledgeable coach who can determine if you need one or the other more.

How To Jump Higher and Hit the Volleyball Harder

How to jump higher

Just about every volleyball player wants to know how to jump higher and hit the ball harder. The best volleyball players have a huge jump and a whip of an arm swing to hit balls through the floor so its understandable.

Technique is always going to be the foundation to success and that comes from hours of on the court.  Still, there is more you can do to get that explosive vertical jump.

This video demonstrates two exercises every volleyball player should include into their workouts to help them dominate on the court or beach.  Coach Rett Larsen should know what he talking about.  He was the performance coach for the Gold Medal team in Womens Volleyball at the 2016 Rio Olympics!

 

Strength Training Is Injury Prevention

strength training helps prevent injury

Stay In The Game

In elite sports there is a lot of emphasis put on injury prevention.  It doesn’t matter how good you are if you are sitting on the bench, hurt.

Teams and athletes look to us to reduce their risk of injury.  We know there are many parts to injury prevention, but the foundation is often strength.

For the last 20 years, Velocity Sports Performance has known that good strength training is injury prevention.

  • Our experience with athletes in 11 Olympic Games backs it up.
  • Our experience with thousands of professional athletes backs it up.
  • A growing body of scientific research is starting to catch up.

is Youth strength training safe

RELATED:  Is Youth Strength Training Safe?

 

You need to know: strength is more than just weight on a barbell

Types of Strength
When you speak about strength or being strong, what do you imagine? An athlete hoisting a barbell loaded with heavy weight in a Squat or Bench Press? How about an Olympic weightlifter explosively moving 400 pounds from the floor to over his head in a single movement?
 
These types of things are often considered “strong,” but what about other sporting actions? How about sprinting at full speed, jumping high, or throwing and kicking?  Most people become unsure whether or how strength is part of these movements.

Defining Strength

What is strength in general and specifically for athletes?  Strength is all about physics, and we are talking about Newton’s 2nd Law of Motion: in a nutshell, Force is equal to Mass multiplied by Acceleration.
 
Strength is a way of talking about the application of force. An athlete can apply force to the ground, to an opponent, to a ball or other piece of sports equipment, or even internally to his or her own body.

Mass & Magnitude

The mass in this equation is what’s being moved. As an athlete that could be things like:
  • a ball or stick in your hands, to
  • your own body weight (jumping, sprinting and cutting)
  • a 300-pound linemen
  • 500 pounds on a barbell

Acceleration and Time

One thing most people recognize is that in sports, doing things quicker is usually an advantage. Athletes don’t have unlimited time to apply force.
 
Acceleration is how fast something increases its speed. The faster the acceleration, and thus the speed, the shorter the time.
 
In sprinting or agility, your foot is in contact with the ground for a limited time. In jumping, there is limited time, and doing it faster than your opponent can be key.  When throwing or kicking a ball or swinging a racket, bat or stick, you want it moving as fast as possible.
 
Speed of movement matters.

Muscle Action

In physics, force is what we call a “vector.” This means it has a magnitude (how much?) and a direction (which way?). Direction matters because forces can be applied in different directions for different effects.
 
One thing to consider about direction is whether the muscle is lengthening or shortening during the contraction. When it’s contracting and getting shorter (e.g., bringing the bar up in a Bicep Curl), it’s called a “concentric” action.
 
If you’re applying force while the muscle lengthens (e.g., while slowly lowering the bar in the 2nd half of the Bicep Curl), it’s called an “eccentric” action.
 
Types of muscle contractions:
  • CONCENTRIC = Shortening
  • ECCENTRIC = Lengthening
Eccentric and concentric strength are not the same. The same muscles may be used, the same structures and contractile proteins, and the same lints moved. Yet, the brain uses different motor control strategies. For the same action concentrically or eccentrically the motor control is different.

Physiology & Motor Control

Another important thing to understand about strength for athletes is where it comes from.  Often people equate strength with bigger muscles. This is for good reason, because they are related, although not perfectly and not for all types.
 
Generating force with your body is a combination of the structure of your muscles (size and biological content) and your neuromuscular control. The muscle is your engine to develop horsepower, but your brain is the driver that decides how hard you push the pedal.

Sport-Specific Strength

When we analyze an athlete in his or her sport, we observe various forms of movement. Speed, agility, jumping, throwing, kicking, hitting, twisting, landing and so on are movement caused by how an athlete generates force.
 
It follows that all types of athletic movement are based on how you generate and apply strength.
 
Still, how can everything be about strength? Is what your muscles do squatting a full barbell different from what they do when you throw a baseball that only weighs ounces?
 
The answer to understanding strength is actually composed of different combinations of Newton’s 2nd Law. Force = Mass multiplied by Acceleration

Playing with the Equation

In different movements we manipulate the 3 parts of the equation—Force, Mass and Acceleration (Speed & Time). The we consider the direction of contraction (eccentric or concentric). Now we have a way to analyze sports movements and strength types.
 
We use this movement-based approach to simplify complex biomechanics into 6 specific types of strength.

6 Types of Strength

Max Strength

This is the basic capability of the muscle to produce a forceful contraction. In application it also involves coordinating multiple muscle groups across multiple joints. The amount of force that can be generated regardless of the time it takes to develop and apply it is called max strength. This is what we call this type of strength even when he or she is under sub-maximal loads.
Maximum strength
Using a car analogy, imagine a big industrial dump truck. It may not move fast, but it can move big loads.

Eccentric Strength

As mentioned before, motor control is different if the action is concentric or eccentric. The capacity to develop high levels of eccentric force is key in sports. Actions such as landing from a jump, stopping, changing direction, winding up to throw a ball and swinging a bat are all eccentric in nature.
When we come to cars, think brakes.  Eccentric strength is like having great brakes on a car to handle those high speeds. An F1 racer has to have great brakes so he or she can go into turns as fast as possible before braking.

Strength-Speed Power

Most sports applications of force involves doing it quickly. Faster is usually better. This is where power comes in. Power is equal to the velocity times the force. Increasing either force or the speed its applied will lead to more power.
strength speed
When an athlete applies force rapidly to a larger load (e.g., blocking another lineman or pushing a bobsled), it’s what we term Strength-Speed Power. “Strength” is first in the name because it’s the bigger component in generating the power. This is like a NASCAR racer who can apply a lot of torque (force), moving the car even at high speeds.

Speed-Strength Power

Here it’s the “speed” of movement (or short time of force application) that is the larger factor in generating the power. Think of an athlete swinging a bat, throwing a ball, or applying force to the ground during high velocity sprinting.
The racing analogy is more akin to motorcycle racing—still applying force at high speeds (like NASCAR), but against much lighter loads.

Rate of Force Development

This is the drag racer. In a drag race, the goal is to go from 0 mph to full speed in as little time as possible. This is the same quality that creates quickness in an athlete. Rapid movement of the limbs, a quick release of the ball throwing or a shot in hockey, fast feet for soccer. Being able to rapidly generate force, regardless of whether the force level is high is known as Rate of Force Development.
Rate of Force Development
A drag racer coming off the line and getting up to speed as fast as possible is a good car analogy.

Reactive Strength

This one’s a combo. It’s a fast eccentric action coupled with a high RFD force. Think of rapid footwork, or a quick step to change direction and juke an opponent. Or the second quick jump when a basketball player comes down and goes back up quickly to get a rebound.
We use a motocross bike as the analogy. Because it has high Rate of Force Development with eccentric-type landings of bumps that gives it that “springy” quality.

Developing Strength that’s Functional

At the end of the day, athletes want the type of strength that will help them perform at the highest level and gives them the resilience to stay healthy.
 
Every athlete needs a base across all six types of strength. While it seems to make sense to go straight to the specific type of strength for your sport, it’s not the best strategy.
 
Doing that actually limits development and long term potential. During early stages of strength training, a broad base of strength is important. Even at the elite levels of sport, athletes mix strength types during different parts of the year.
 
As you progress in your development and level of competition, you begin to focus on the specific qualities. The strength types more important to your sport, your position and even your individual genetics and style of play.
 
Strength is much more than how much you can lift on the barbell.

Do athletes need a bigger engine or better brakes?

When it comes to training for performance, many, if not most, people immediately begin thinking about being faster and more powerful. After all, victory often depends on getting to the ball, finish line, goal line, end zone, or basket before your opponent.

RELATED: Learn Velocity’s Proven BIG 4 Speed Formula

This is the same as buying a new car with only one concern: How big is the engine? How fast can it go? How quickly does it get to 60mph? This is, of course, very important to athletic performance.

So, if we stick with our car metaphor, what’s going to happen if you buy a brand new Ferrari but the breaks don’t work? It won’t matter how fast you can go, because, without breaks, you can’t control all that speed.

In fact, the majority of non-contact injuries happen in just this way: athletes can’t manage stopping because they don’t have strong enough brakes and something, well, breaks.

So which one should you pick? The answer is that it depends. If you’re an explosive athlete who can’t change direction quickly, then you probably need better breaks. If your top speed blows away your competition but it takes you too long to get there, then maybe you need a more powerful engine. The first step is to assess where you are now and where you need to be.

RELATED: Why Athletic Strength Is More Than How Much Weight You Can Lift On A Barbell?

At Velocity, we use a battery of tests to see where our athletes are strong and where they need to improve. Based on this and other information, like injury history and goals, our coaches can make smart decisions about what our athletes need in order to improve their performance.

If you want to see how your brakes and engine are working, contact us and schedule testing!

Coaches Favorite: Kettlebell Exercises

kettlebell

Kettlebells are a great tool which have been around for decades but have become popular again.  And it’s for good reason; they’re versatile and dynamic.  We surveyed some of our coaches to find out what their favorite exercises are with a kettlebell.

Coach Mike’s Pick: Double Kettlebell Clean + Squat + Push Press

The Double Kettlebell Clean+Squat+Push-Press is a full-body exercise complex that gives you a lot of bang for your buck. When done correctly, you develop power through the Clean, leg strength in the Squat, vertical pressing strength in the Push Press, and core strength throughout the entire movement.

Execution: Before beginning, you must keep your core rigid through the entire movement to ensure you don’t hurt yourself.

  1. Start with the two kettlebells of the same weight 1-2 feet in front of you and feet slightly wider than your shoulders.
  2. With knees slightly bent, keep your back flat and push your hips back to the wall behind you and grab the kettlebells tightly.
  3. Take a good breath and “hike” the kettlebells backward between your legs
  4. Stand up as fast you can to snap the kettlebells up and forward into the rack position.
  5. Clean the kettlebells to the rack position.
  6. Take a new breath, slowly squat down with the kettlebells as low as you can then drive up as fast as possible.
  7. Start to press the kettlebells above your head as you reach the top position, using the momentum of your squat to help finish the movement.
  8. Once the kettlebells are straight above your head, take another good breath and slowly pull the kettlebells down to the Rack position.
  9. Once in the rack position, reset with a good breath and prepare yourself for another repetition. Instead of starting with kettlebells on the ground, carefully let the kettlebells “fall” (while still holding them) and again hike them back through your legs and repeat the exercise for as many reps as prescribed.

Velocity Sports Performance on Vimeo.

If your goal is to develop all-around strength, use a heavy set of kettlebells for 3-6 reps. If your goal is to get a solid metabolic workout, go with a lighter set with which you can get in 8+ challenging reps.

Misao’s Pick: Halo

The Kettlebell Halo improves upper body mobility and stability. It is an overhead pattern that requires core stability as well as mobility and stability of the shoulders and shoulder blades.

Execution:

  1. In a kneeling or standing position, hold the kettlebell with both hands by the horns
  2. Brace your core and hold the bell in front of your chest.
  3. Slowly circle the bell around your head clockwise, then counter-clockwise. The movement must be slow and under control.
  4. The weight of the bell needs to be light enough so your torso does not sway side to side or arch.

Velocity Sports Performance on Vimeo.

You can easily progress this exercise by changing the way you hold the bell. Holding the weight with the bell pointing down is easier as the weight stays securely in your palms. If you grip it upside down (with the bell on top) it becomes more challenging because the weight travels farther away from your body, increasing the strain on the muscle due to a longer lever.

Coach Kenny’s Pick: Turkish Get Up

The Turkish Get-Up is great for shoulder stability, overall strength, and just plain toughness. It also can help develop a sense of body control and awareness and test an athlete’s focus.

Execution:

  1. Start laying on your back with your right knee bent and your left arm extended out to the side. Your kettlebell should be on the ground next to your right arm.
  2. Grasp the bell with your right hand and press it up so your right arm is completely straight and perpendicular to the ground.
  3. Keep your eyes on the bell throughout the entire movement.
  4. Roll up onto your left elbow, and then to your left hand.
  5. Push your hips up towards the ceiling as high as you can.
  6. Slide your left leg under your body and come up onto your left knee.
  7. Stand up.

To get back down, simply reverse the movement.

  1. Come down to your left knee.
  2. Place your left hand on the ground
  3. Slide your left leg out from underneath you so it’s totally straight, keeping your hips pressed up.
  4. Let your hips come to the ground.
  5. Lower on your left elbow.
  6. Completely lower yourself to the ground so you are laying flat.
  7. When bringing the kettlebell back to the ground, be sure to use your free hand to help guide it. Safety first.

Now do the same thing on the other side.

Coach Yo’s Pick: Bottom-Up Overhead Press

This series is great for shoulder stability, grip strength, elbow joint health, and core strength and stability based on athlete’s positioning. The Bottom-Up series gives the athlete a different stimulus since the load (kettlebell) is in an unstable position. This will improve overall proprioception (your level of awareness of where your body is in space), and by using different base positions ( ½ Kneeling, Tall Kneeling, Standing, Single Leg, etc), allows athletes to develop core strength and stability. It is a very unique exercise, and the kettlebell is an ideal tool for its execution.

Execution: Before you start, make sure that you have proper overhead mobility and stability and can do basic overhead press exercises with dumbbells or barbell. Once you have that skill, you can start by holding the kettlebell upside-down (bottom-up) right in front of shoulder. Make sure you the weight you use is not more than you can control with your grip alone. You can check holding the bell upside-down in a static position for a while without letting it drop. Ensuring you have basic stability before adding movement is always a good idea and will prevent needless injuries.

Performing the exercise in different positions will work on different elements of core strength and stability.

Coach Gary’s Pick: Split Squat KB Complex

The Split Squat KB Complex addresses muscle activation patterning, neuromuscular control, and dynamic stability of the trunk and lower extremities. This complex will challenge any athlete while reducing the likelihood of lower extremities injuries. This is valuable because more than 50% of injuries in college and high school athletics are knee injuries according to the American College of Sports Medicine. This 4-phased complex also allows coaches to progress athletes based on ability, making it excellent for novices and experienced athletes alike.

Execution:
Starting position – Kneel with your right foot flat and the right knee directly over the heel. Start with the bell on the ground in front of your left knee.

Starting Movement:
Inhale and lift the kettlebell with your left hand to the level of your forward (right) thigh.
Level your hips by pressing the hips forward and Press the forward (right) heel into the ground.
The upper body should remain tall and erect with the chest up and out and the shoulders level and stacked over the hips.

Phase 1: Split Squat – Stand up on both legs while driving your front heel into the ground. Once your legs are fully extended, reverse the motion and lower the body back to the starting.

Phase 2: Clean to Split Squat – Quickly thrust the body upward and bring the bell to the front of your shoulder. With the bell in this position, extended both legs to stand up, again driving your front heel into the ground. Once fully extended reverse the motion and lower the body back to the starting position.

Phase 3: Jerk to OH Split Squat – Quickly thrust the body upward and Jerk the bell overhead with the upper arm tight to the ear. With the bell in this position extended both legs to elevating the body upper, think about driving your front heel into the ground. Once fully extended reverse the motion and lower the body back to the starting position but remaining on the feet.

Phase 4: OH Split Squat to knee drive – With bell overhead and the upper arm tight to the ear, extend both legs to stand up. Once fully extended, quickly drive the back knee up and in front of body then back to the same spot on the ground. Once ground contact is made lower the body back to the starting position but remaining on the feet.

 

Exercise 6: Pistol Squat

The Pistol Squat is a great way to test balance and overall hip and glute strength. It also gives you a clear interpretation of your strength to bodyweight ratio. If you can easily perform the movement as a bodyweight exercise, add a kettlebell.

Execution:

  1. Front rack the kettlebell of your choice. Hold the bell with whichever hand is opposite from your “down” leg.
  2. Load your weight over one leg and slowly lower yourself to the ground on a single leg.
  3. Extend your “up” leg in front of your and keep it from touching the ground.
  4. Load your bodyweight onto one leg and as you drop down into a squat shift the loading glute back and extend the opposite leg forward in an attempt to keep it from touching the ground.

If you want to challenge yourself further, try performing the same movement while standing on some type of balance pad to give your foot an unstable surface to manage.

Coach Rob’s Pick: Single Arm Kettlebell Swing

The Swing is certainly the most ubiquitous use of the kettlebell. Once you have mastered it, try moving onto the single arm swing. This variation adds an anti-rotational component to the explosive hip drive inherent to the Swing.

Execution:

  1. Start with your feet hip-width or slightly wider. The kettlebell should be on the ground about a foot in front of you. Remember that during any weightlifting exercise, it is crucial that you keep your core tight and your back flat. Failure to do so, especially during a ballistic movement like a kettlebell swing is asking for injury.
  2. The weight you select should be lighter than you think you need until you get the feel for the exercise.
  3. Drop your butt towards to floor while keeping your chest up, grasp the bell firmly with one hand and “hike” it behind you, keeping your wrist tight to your body.
  4. Stand up quickly and let the bell rise up to about shoulder height. This part of the movement should be snappy and crisp.
  5. Keep your grip on the bell and let it fall, swinging back behind you while you keep it tight to your body.
  6. Repeat this movement for as many reps as prescribed.

Once you have this movement down, you can challenge yourself by switching hands every rep. To achieve this, let the bell swing up to its highest point, at which time it should be weightless for a brief moment. Have your opposite hand ready to grab the handle as soon as you let go with the swinging hand.

Whether you alternate hands or not, the Single Arm Swing is sure to get your heart rate up, make you sweat, and develop leg strength and core stability. Have fun!

Velocity Sports Performance on Vimeo.

 

Are your offseason gains lost when it matters most?

Tim Hanway MS, CSCS, ASCC, ACSM

Sports Performance Director
Velocity Sports Performance - Norwood

As a professional coach, I have written extensively on a multitude of topics related to strength and conditioning. Whether I am talking about programming, the emotional aspects of training, or the nuts and bolts of coaching, I always come back to the importance of strength.

Strength is, in my opinion, the single most important physical attribute that an athlete can possess; it is quite literally the precursor to all expressions of athleticism. Speed, agility, quickness, explosiveness, and endurance all require strength in different forms. Strength training greatly enhances all of these qualities, which is why adopting a strength-training program that utilizes upper- and lower-body compound movements is perhaps the most effective path to athletic success and longevity.

One of the biggest challenges athletes encounter with strength and conditioning programs is that all the benefits they gain from training are reversible. All the hard work and performance gains an athlete makes during the off-season or pre-season can evaporate when this type of training is not maintained for prolonged periods of time.

The realities of In-season:

People are often surprised and have trouble accepting that they can lose their gains, especially young parents and athletes. The cold, hard truth is that more often than not, practices are simply not focused or intense enough during the season to stress a young athlete’s body enough to develop or maintain strength and fitness levels.

A head coach is, more often than not, focused on his or her own “one thing” during the season: winning. Simply put, priorities change once the season starts! Head coaches are instead more focused on tactics, plays, and improving whatever deficiencies were revealed in the team’s last game than they are on fitness and strength gains.

Let’s consider a basketball team: If they did not recover enough rebounds during the last game, that coach is definitely going to have the athletes work on lots of ‘box out’ drills in order to re-enforce technique and try to remedy the situation. Likewise, if the team’s offense wasn’t functioning properly, chances are that same coach is going to spend a significant amount of time in practice that week walking through all the plays at a moderate pace in order to “iron out the kinks” and fix any confusion.

What does this mean from an observational and practical standpoint? Most likely, the five starters on the team will go through the plays at a moderate intensity (at best) while the remaining 10 players stand around and watch from the sideline for prolonged periods of time. The truth is, almost any team’s in-season practice is going to consist of a lot of standing around, talking, and direction from the coach, with much less time dedicated to all-out scrimmages or drills attempting to simulate game-day conditions. This is supported by a scientific study conducted by Wellman and colleagues (2007) that compared the differences between pre-season and in-season practices and game times among NCAA Division I football players.

Whether discussing the height of collegiate sport or your average middle-school or high school team, studies like this one show that athletes simply do not experience the same kind of workloads during the in-season period compared to pre-season. The result is that players get weaker – literally losing strength.

In a study performed on elite male rugby and football players, McMaster and colleagues (2013) found that strength levels have a tendency to decrease after a three-week period when no form of strength activity is maintained. In addition, according to Meylan and colleagues (2013), the decay rates of strength parameters for youth athletes can show an even more marked difference, especially for those athletes who have not yet hit their growth spurt. According to the researchers, these athletes lost more strength and lost it even more quickly as compared to their peers who had already hit their growth spurt.

The Good News:

There are some very practical solutions that athletes can employ in order to mitigate the negative effects of the paradoxical in-season strength and fitness loss. If the mantra ‘use it or lose it’ applies – and it does – the simple solution is to ‘use it’ by strength training in-season. This does not mean that an in-season strength program should be the same as an off- or pre-season program. We know that athletes are spending a lot of time in practices and games, all of which require physical resources and take a toll on the body.

In a study conducted on male handball players (Hermassi et al. 2017), researchers found that as few as two sessions per week were sufficient for athletes to maintain their performance gains, while another study found that so long as intensity was kept high, athletes were able to maintain their performance gains with as little as one session per week (Bell et al. 1993).

Call to Action:

What can you do to safeguard and maximize your son or daughter’s performance gains that they worked so hard for during the off- and pre-season?

The answer is this:

Maintain an in-season strength and conditioning routine that can be executed in a little as one hour per week.

Our experience – and the experience of the athletes who train with us – confirms that this is all it takes to make sure they finish the season just as strong as they were at the start. In addition to meaning these athletes perform well during the season it also means that their strength improvements do not have to be regained at the end of each season, effectively accelerating their performance at a rate greater than their peers.

References:

Bell, G. J., Syrotuik, D. G., Attwood, K., & Quinney, H. A. (1993). Maintenance of Strength Gains While Performing Endurance Training in Oarswomen. Canadian Journal of Applied Physiology,18(1), 104-115. doi:10.1139/h93-010

HOCKEY TRAINING: Five Exercises to Help you Battle in the Corners

Hockey training

We do a lot of work with hockey athletes here at Velocity, and one thing they all share in common is that they are ready to work. Hockey has a long tradition of grueling training, and that’s because being on the ice is a fight (sometimes literally, though that’s not what we’re talking about here).

As performance coaches, we love athletes who aren’t afraid to get after it – the ones who are going to leave a trail of sweat on the gym floor when they’re done. Hockey players always fit this description, so we wanted to give all of you ice-warriors a few exercises to help you win when you’re up against the boards, fighting it out in the corners.

RELATED: Why Athletic Strength Is More Than Just How Much Weight You Can Lift On A Barbell

Add these to your training program and we bet you’ll win more of those corner battles on your way to winning the war.

Exercise 1: The Burpee

For such a simple exercise, few movements forge mental toughness and an unbreakable body like the burpee. With little more required than “get down to the floor and get back up,” it develops a mindset and work ethic that won’t quit, which is critical for winning the battle of the boards during all three periods and beyond. If you want to learn how to bend but not break, all while preparing your body for grinding competition, then burpees are for you.

To begin, drop your chest to the ground as quickly as you can while under control. Maintaining tension through your midsection during the descent is critical to a clean, efficient burpee. Next, push away from the floor, snapping your hips up so your feet land under your hips and jump. Spend as little time on the ground as possible – if you want to build a better motor you have to practice going as fast as you can. It’s that simple: get down, get back up! This simple exercise is a fantastic tool for the body and the mind because you have to keep your body moving even when it wants to give out – a skill every hockey player needs.

 

This physical and mental strength will serve you well the next time your opponent picks your most exhausted moment to come after you. If nothing else, the burpee teaches you how not to give up.

Exercise 2: Keiser Pulley Push-Pull

This cable exercise is a great way to build whole-body explosive power in a rotational pattern.  When you are fighting along the boards, it’s not just about pushing or pulling in one direction. When you need to knock the other guy off his skates, rotational movement from your skates all the way through your upper body makes the difference. Build this type of explosiveness and you’re sure to win more battles.

We like to use the Keiser trainer for this exercise because its unique air resistance lets us move more explosively and measure an athlete’s power output, but you can use any cable trainer that has two arms.

In a good athletic stance, use your legs and hips to rotate your body. Transfer that power to an explosive pulling and punching motion with the arms. Control it on the way back to the start position.  

 

Exercise 3: Double Kettlebell Front-Rack Position Lateral Lunge

This exercise is designed to strengthen the legs and core in the frontal plane of movement (side to side). It challenges the athlete’s ability to resist and absorb lateral forces as well as produce force coming out of the lunge. These abilities are critical not only for general skating but also for staying on your skates while pushing back against your opponent as you fight for the puck.

To do the Double Kettlebell Front-Rack Position Lateral Lunge, you need to:

  • Hold two kettlebells in the front-rack position with elbows forward and not to side
  • Maintain a rigid torso
  • Take a large step to the side with toe pointed forward (not to the side) while keeping the other foot in place
  • As you lower yourself to the side, keep your chest up, core tight, and feet flat
  • Push your hips backward
  • Get as low as possible while maintaining posture
  • Push back to original standing position with speed and continue to maintain posture
  • Repeat on the opposite side and continue to alternate for the prescribed repetitions

Exercise 4: Anti-Rotational Stability Chop

This exercise is designed to improve athletes core control in different positions. It teaches the athlete to engage and brace his or her core while the rest of the body is doing other tasks. This ability is critical for all movements on the ice, but especially at the point of contact.

To do the Anti-Rotational Stability Chop, you need to learn basic breathing technique and lumbo-pelvic control. Then you can apply the exercise to different base positions, such as: Tall-Kneeling, Half-Kneeling, Split Stance, and Standing.

 

Exercise 5: Airex Pad Single Leg Stability

The is a simple exercise that can be performed with or without equipment. It forces the athlete to focus on balance and stability at the hip, knee, and ankle of the working leg. Even though it doesn’t involve any weights or powerful movements, the improved balance and stronger stability you will gain will make you a tougher skater to knock down.

To perform this exercise, stand with both feet together and one small ball of any type in each hand (LAX ball, baseball, tennis ball, whatever you have). Start with your feet on the ground and progress to standing on a balance pad when you need more of a challenge. While hinging at the hip and keeping your back flat, bring your chest forward and down by bending one knee while keeping the opposite leg straight. Reach across your body with the right hand, placing the ball on the ground. Return to standing position and try to maintain your single leg stance. Next, reach across your body with the left hand to place the ball on the ground. After you’ve stood back up, repeat the process to pick up the balls. Small cones may also be used: instead of setting something down and picking it up, you have to touch the cones.