The Complete Guide To Hockey In-Season Training

Complete Guide to in-season hockey training

Whether players should lift during their hockey in-season training is often confusing. The proven benefits to developing strength for athletes are significant. It’s beneficial for injury prevention, speed, power and more.

There is no question that young hockey players need to be developing strength.  Many make this the focus on their offseason.

After offseason gains are in the books and the season is underway, what should a young hockey player’s in-season training look like?

Afterall, you only have so many hours and so much energy.  Isn’t the in-season just a time for maintaining the strength you built in summer?

NO.  If you treat it this way you will fall behind and never reach your potential.

But can you really improve strength when playing a full hockey season? 

YES.  You can increase a lot.

Here’s the key.  Young players need to strength train if they really want to continue improving, but if they train like it’s the off-season they’re doing it wrong.

MYTH: Hockey Players Can’t Lift Heavy Weights In-Season

Decades ago the thought for coaches & players was that during offseason you built strength & power.  In-season you just tried not to lose too much. 

Back in the day, a lot of the training methods came from body building where it was all about gaining size.  Strength and power were a side-effect.

Body building methods to gain muscle size are traditionally based on a high volume of exercises and inducing muscle fatigue.

In the off-season they were grinding to build muscle and strength.  Bodybuilding techniques are great for building muscle mass, and they are built on lots of sets and repetitions.  Lot’s of time with the muscles under tension. 

In strength training terms; Volume.

Because of this, a common approach to in-season training was built on the idea that lifting heavy would make players too tired. 

The thinking went that if they spent too much energy training, they would be sore and tired.  That would interfere with playing well and skill development.

So, instead many people jumped to the conclusion that lifting lighter weights was the way to go.  And if you have a lighter weight, you naturally can do more reps.

The problem is that lowering weight and increasing reps can lead to more fatigue, energy expenditure and even soreness. 

In elite hockey, that idea was losing steam when mandatory helmets were introduced. 

Now to be fair, it’s true that if you spend in-season doing 2-hour, grinding workouts with high volume, you’ll be fatigued.   As a coach or player that’s not ideal.

On top of that, it also won’t stimulate the neuromuscular system enough to maintain or gain strength.

The reason this approach was abandoned; it didn’t work

Players were fatigued and sore but, they still lost strength.

Even Pros Can Get Stronger In-season

Many people think the demands of a youth hockey season are too much to gain strength. Here’s some perspective; even young pros can still improve strength & power during their season. 

That’s right.  Although they may be in the NHL or the minors playing a full season, many players haven’t fully developed their strength yet.  In their late teens through early twenties, they still have a window of opportunity to improve.

We know because Velocity coaches have done it time and again with individual players and teams.

The key is that they stimulate their nervous system enough to improve.  That’s hard because it takes high intensity and power output to stimulate adaptation.  So how do they do it?

Micro-dosing Training

Hockey in-season training is all about stimulating the central nervous system and muscle, not grinding down the body and tissues to grow muscle.

Fast, explosive and heavy movements are what stimulate that type of adaptation.  They do take focus and a serious effort. In strength training terms; Intensity.

The good news though is that you don’t actually need a lot of it.

You see, it’s the intensity, not the volume that stimulates the change. 

Getting 2-3 small doses of intensity every week will do the trick.

This is what we see with pro and Olympic athletes at the pinnacle of sports.   When they have a demanding schedule they can’t spend the time or energy on long grinding workouts like the off-season.

On the flip side, they also can’t afford to lose strength & power.  That just leads to poor play and injury.  It’s player who can be at their best come playoff time who shine.

If You’re Not Gaining You’re Falling Behind

Here’s the scary part; if you get stronger and bigger every off-season, but don’t train in-season you are falling behind.

That’s right, other player who train in-season are getting an edge and developing further. As a really young player your strength levels will continue to improve just out of natural development. You keep pace.

However, as you hit middle school and older things start to change. Even with great gains in the summer, if you dont train in-season at best you’ll gain slower. Worse, you can actually be losing strength.

That’s right, getting weaker through a season. For a high school player who has a few years of training under their belt, they can really make gains during the off-season. Yet, once they stop and the stimulus goes away the body will readapt to a lower strength level.

A good hockey in-season training program will stimulate that improvement and stop them from falling behind.

in-season strength training
A player who trains in-season will continue to improve strength. Not as fast as they do in the offseason, but they continue to improve. A player that eliminates strength training, or just does light weight will slow their gains or actually get weaker during season. After a few years the small differences add up to a big advantage to players who train smart!

Get Stronger With the Right Hockey in-season training

So the key is to stimulate the neuromuscular system with small doses of intensity.  What does that mean?

Well it depends a bit on the developmental level of the athlete.  This means their biological development as well as training experience. 

Get this straight, it’s not about their level of hockey skills. Some very skilled players, have barely learned to train off-ice.  Others may hit puberty earlier and some later.  The right training is based on evaluating these factors along with their current strength & power levels.

Middle School Years 

For a middle school age athlete, they are approaching or in early puberty. They probably don’t have a lot of strength training experience yet.

An athlete at this age also can recover and adapt quickly.  Plus, they don’t actually have the skill to recruit all their muscle fibers so they never hit the true high intensities.  So overtraining them is really unlikely.

This means they need to be doing some explosive plyometrics, speed drills and basic strength training.  Because they have such a big window to improve, and a low-level experience, it doesn’t take a lot.

In practice hockey in-season training this age could look like;

  • 2 -3 sessions per week
  • 60-90 minutes
  • Dynamic warm-up for injury prevention and movement fundamentals
  • Athletic movement, speed and plyometric drills
  • Two – three basic explosive and strength lifts with kettlebells, dumbbells or barbells.
    • Olympic lift fundamentals
    • Squat, deadlift
    • Bench, chin and rows
  • Compound free weight movements that involve multiple joints.
  • Low reps 3-8 at most.  Sets of 3-5 on basic lifts

In fact, the bigger benefit of in-season training for this age athlete is that they are learning to train.  Learning how to do the exercises right.  They are building the neuromuscular foundation for when hormones kick-in later.

High School or Higher Training Age

For a hockey player of high school age their physical development is further along.  They may have some experience with strength training now.

For this type of athlete, the requirements go up.  Now they can recruit more of their fast-twitch type muscle fibers.  They can coordinate the movements a bit better.

Therefore, to generate enough intensity they need combinations of two things;  Speed and force. 

Speed

Fast, explosive movement are one way to stimulate the neuromuscular system.  This means things like Olympic lifts with high velocity and power output.  Explosive medicine ball drills.

The muscle need a high rate of force development to create this stimulus.  Light weights moving slow, wont do it.

Traditional strength lifts like the bench, squat or deadlift only move between 0.5 and 0.8 m/s.  That’s just too slow.  Explosive lifts with medium weights should generate movement velocities between 1.0 and 2.0 meters per second.  That’s the stimulus needed.

Force

To really stimulate the fast-twitch fibers and the central nervous system, basic strength lifts need to be heavier.  That requires a higher level of force production.  This stimulates the central nervous system as well.

It also requires multiple muscles and joints under tension.  Isolation exercises just don’t give enough bang for the buck.  Whole body exercises stimulating lots of muscle groups and joints are the way to go.

Weights need to typically be 85% or more of 1 rep max.  That gets the nervous system fired up.  It also means to avoid fatigue only 2 – 3 reps are needed.

High School hockey in-season strength example

For a developing athlete a hockey in-season training program may look like:

  • 2 -4 sessions per week
  • 30-60 minutes
  • Dynamic warm-up for prep and injury prevention
  • Two – three basic explosive and strength lifts with kettlebells, dumbbells or barbells.
    • Olympic lift  
      • velocity of 0.75-1.6 m/s
      • 3-5 sets or 1-3 repetitions
    • Lower body lift – squat, deadlift, step-up, lunge
      • 85% or more of 1RM
      • 2-4 sets of 1-4 reps
    • Upper body lift – press, row, pull-up
    • 2-3 Injury prevention exercises

Sports Recovery

The off-ice training is the stimulus for the body and neuromuscular system to change.  Improvements come for the body and brain’s process of adaptation.

Here’s the thing to take note of; adaptation happens when the athlete recovers.  The work is the stimulus, the recovery is where adaptation happens.

What Is Recovery

Recovery is a term used for the processes every athlete goes through after some type of stress or fatigue.  The return to their previous normal state or slight improvement. 

This recovery process is specific to the type of stress the body experience.  In sports we classify four types of stress.

Faster Recovery for Hockey Players

When looking at how a young hockey player can recover faster, there are some key strategies we know work. 

The body recovers in all four areas of stress during sleep.  That’s why sleep is the foundation of all recovery.   If you’re not sleeping enough, anything else you do is just a band-aid.

We’ve witnessed the benefits of sleep in athletes for decades with measurable changes in their readiness when they sleep better.  Following a routine and some basic tips can really help athletes sleep better.

Training, practice and gains create fatigue. During recovery you body returns to baseline or improves. Over time if you don’t recover you may over train.

The second foundation in sports recovery is basic nutrition.  We aren’t talking in-depth diets or loads of supplements.  Just getting enough of quality foods at the right times.

After these it becomes about the specific needs you have.  It could be more mobility to help your muscles and joints.  Types of flushing like compression, e-stim or cycling can be great when your legs are heavy after a grinding on-ice session or game.  Or maybe it’s learning to reset mentally with breathing, visualization, floatation or other methods.

Start with the foundation of sleep and nutrition.  Then you can add specific recovery methods to meet the rest of your needs.

Take Your Hockey In-season Strength Training Seriously

Unless you want to fall behind other players, you should take your in-season strength training seriously.  If you are not getting stronger and more powerful in-season you are falling behind.

You can’t train with the same grind of high volume as in the off-season.  However, focusing on consistent training every week and small doses of high intensity will make you better.

The science backs it, decades of experience have shown, and it’s practical to do.  The only questions, is why aren’t you training smarter during the season?

Is Weight Training Good for Kids?

strength training weights

People ask us almost daily, “is weight training good for kids.”   

Let’s cut to the chase; It Is.

Velocity coaches from Spartanburg Regional Healthcare System instruct young athletes on proper technique

We believe in using strength training of various methods to increase neuromuscular recruitment, increase bone density, increase range of motion and strengthen the tendons and joints of the body.

Don’t just take our word.  According to a 2018 MAYO Clinic statement

“Done properly, strength training can:

  • Increase your child’s muscle strength and endurance
  • Help protect your child’s muscles and joints from sports-related injuries
  • Help improve your child’s performance in nearly any sport, from dancing and figure skating to football and soccer
  • Develop proper techniques that your child can continue to use as he or she grows older

“Keep in mind that strength training isn’t only for athletes. Even if your child isn’t interested in sports, strength training can:

  • Strengthen your child’s bones
  • Help promote healthy blood pressure and cholesterol levels
  • Help your child maintain a healthy weight
  • Improve your child’s confidence and self-esteem

What is “strength training”?

This is one of the key questions we need to understand.  Lot’s of confusion starts with the concepts of strength training versus weight training.

When people say strength training, they often imagine someone in a squat rack lifting barbells. 

olympic weightlifting clean and jerk
People often imagine Olympic weightlifting when strength training is brought up

Or maybe that weightlifter at the Olympics performing at the edge of human capacity.

Yes. Those can be strength training, but there’s a whole lot more.

Strength training is basically any exercise that relies on some form of resistance to stimulate your body to get stronger. 

This includes:

  • Body weight
  • Elastic resistance bands
  • Sandbags
  • Medicine Balls
  • Free Weights
  • Resistance Machines
  • Barbells
  • Dumbells
  • Kettlebells

Why so many different things?  For one, to do it properly we need a range of resistance levels. 

We need things that are light so we can learn to do it properly and start at the right level.

We need things that are heavy so we can progress and stimulate the body to adapt.

Are bodyweight exercises safer?

Many people look at bodyweight exercises as inherently safer.  Afterall, you don’t have that extra weight to lift.

Except they forgot about the bodyweight. A coach using proper exercise selection and regressions can actually allow an athlete to lift less than bodyweight.

kids strength training push-ups
A push-up is 64% of your bodyweight. Sometimes that’s too much for a young athlete.

Have you ever watched young athletes struggle to do a push-up well? Their bodyweight is just too much for their strength level. It’s no different than lifting a barbell thats too heavy.

When doing a push-up, an athlete is actually lifting about 64% of their body weight. For a 120 lb. young female, that would mean they are lifting 77 lbs.

Imagine if the athlete was laying on a bench press, struggling with 77 lbs. Its the same with a push-up. In this case, is the coach gave the athlete two twenty pound dumbbells or an empty bar, the weight would be significantly less.

Who knew? bench pressing weights is a regression. Push-ups are actually more advanced and heavier!

Don’t even get started on pull-ups.

Is weight training necessary?

This question doesn’t come up often, but it’s in the back of a lot of people’s minds.  The reality is that the data, the medical experts and decades of experience tell us it’s safe. 

However, to be honest, we often follow our preconceived ideas.

If you’ve believed strength training with weights is dangerous for decades, it’s hard to instantly change that.  And that’s fair.

So then the question is; can you get better without lifting weights?

Yes, you can. 

However, you can’t stimulate the body to adapt as efficiently or as much. 

  • You don’t stimulate the neuromuscular system to recruit muscle and protect the joints and ligaments as well.
  • You won’t improve the tendon tissue as well to reduce the risk of tendonitis and overuse injuries.
  • You won’t stimulate bone density during this crucial youth growth period and have the same life long positive effects.
  • You won’t build the same level of explosive strength
  • You won’t learn how to do the movements and be prepared if you start training with your team
  • You will miss out on the proven reduction in overall injury risk for athletes

How can kids train the right way?

Here’s the key to safely strength training for young athletes; Do It Right.

That means learning the movement patterns and habits that lead to safe weight training.  Have a qualified coach teaching it.

That’s not necessarily a bunch of kids in the garage with the weight bench trying to max out.  It’s not joining an adult class with a weekend certified coach who is cheering them on to do more. 

coaching youth strength training basics
Teaching the fundamentals of good body positions is part of Velocity coaching.

It’s also not about moving “perfect”.  Young athletes need to learn the proper movement patterns.  However, trying to enforce a robotic standard of “perfect” actually takes away from the learning. 

This is where professional coaches standout.  They know how to put the athlete into positions where they are safe to learn how to move. 

Coaches use regressions of exercises to teach.  These are simpler movement patterns that reinforce the right movement safely.  They lead to progression in movement patterns or weight lifted.

Strength Training Is Good for Kids

Strength training for youth is endorsed by all major medic and professional organizations.  While the old myths of it stunting growth or being dangerous slowly die, its understandable that some people are hesitant.

The benefits are large and necessary to prevent injury in athletes.  Weight training is an efficient and effective method for athletes.   Do it right and reap the benefits.

The Essential Guide to Sport-Specific Training

guide to sport-specific training

Sport-specific training is a constant topic of discussion among athletes, parents, and coaches. For our team at Velocity, it comes up daily in settings from local performance centers to our coaches at Olympic training facilities.

While some performance coaches scoff at the idea of sport-specific training, we think it’s a great thing to discuss.

It just seems like commonsense after all.

  • It’s based on you competing in a sport.
  • You want to improve performance in that sport.
  • You have decided to spend time and energy on training other than sport/skills practice.
  • Therefore, it’s perfectly logical that it should be specific.

In this article we are going to cover the essential things you need to understand about sport-specific training. This includes:

  • Why you want sport specific training
  • What sport specific training is
  • Transfer of training
  • How sport-specificity affects Long term Athletic Development
  • How do you figure out what’s specific for your sport
  • Sport specific speed, strength, stamina and mobility

Why Do You Want Sport-Specific Training?

Whenever an athlete wants a training program, one of our key questions is: Why Do You Train?

It’s at the foundation of how Velocity approaches athletes. We need to understand an athlete’s WHY? Their deeper motivation.

How does this have anything to do with a specific training program?

Context and coaching

See, as coaches, our responsibility is to help guide you to the right solutions. If we don’t have any context to your question about sport-specific training, we are making assumptions.

Those assumptions could be wrong.

Do you want sport-specific training because you have potential in the sport and want to play at a high level? Some athletes are just trying to make their team or get playing time.

Maybe you want to train specifically so that you can reduce your risk of injury. Or perhaps you’ve had an injury and are trying to get back to your performance level before.

Perhaps you’ve tried some training that wasn’t “sport-specific” and you didn’t see results, or worse it had a negative effect on your game.

All of those goals may, in fact, require some type of sport-specific training. However, they are also different.

A coach needs to understand this. After all, when we look deeper, sport-specific training is really; your goal specific training.

If a coach doesn’t really understand your goals, then your training might be off target.

Most athletes seek sport-specific training to meet their sport-specific goals. If your coach doesn’t try to understand you and your goals, then they might be missing the mark.

That’s bad coaching.

So let’s start by redefining the underlying motivation for sport-specific training;

  • You want results in your sport.
  • You don’t want to waste time and effort on training that doesn’t contribute to those results.

The purpose of sport-specific training is to use training to effectively and efficiently reach your goals in the sport.


What Is Sport-Specific Training?

Since we know what the purpose of sport-specific training is; what is it?

When we discuss “sport-specific” we hear a lot of different concepts. Often it’s based on doing things that look like the sport. Drills that use the sports equipment; balls, bats, gloves, sticks, etc…

Other times it’s practicing sports skills with rubber bands on, wearing weight vests, or hooked up to bungee cords and devices.

At the elite level those ideas occasionally come up, but the discussion tends to get more straight to the point. Our Olympic teams and pro athletes want results. In their sport. Period.

swimming specific training
With a small margin of error in many elite sports, training has to be specific

Elite athletes face heavy physical and mental demands. The margin for error can be incredibly small. In some of our Olympic sports hundredths of a second are the difference between a Gold medal and not being on the podium at all.

An athlete facing that can’t waste time or energy. They can’t add wear and tear to their body if it doesn’t give them better results in return. Their coaches care about the same thing.

Sports specific training transfers to better performance, lower injury risk and increased competitive longevity.


Transfer of Training

This brings us to the concept of “transfer of training” in sports. Is the training you are doing transferring to improved performance in your sport? Is it transferring to lower injury risks so you can be in the game competing? Is it helping to extend your career for more years?

Those are the questions that we ask of every component of training at the elite level. As an athlete has more years of training, this becomes harder and harder to achieve. This is related to their “window of opportunity” for different qualities.

Windows of Opportunity

An athlete’s opportunity to improve a skill or ability is not infinite. A human will never run 100mph or vertical jump 20 feet. There are limits to human performance. So let’s apply this concept to a physical ability. Sprinting.

To make our point let’s get a little extreme. A 3 year knows how to run. They won’t be that fast compared to an Olympic sprinter.

If we consider the Olympic sprinter near the top of human potential, then the 3 year has a huge window of opportunity to improve. The Olympian is nearing human limits, so their window of opportunity is very small.

usain bolt sprint start
An Olympian has developed to such a high level, their room for improvement is usually very small.

This concept has a profound effect on the transfer of training. At early levels, doing general things will bring big dividends. A soccer team of 8-year olds will improve their soccer skill just by becoming more coordinated. Doing things like skipping, jumping hoping and running will increase their basic athleticism.

They get a lot of “transfer” (improvement in their sport) from that unspecific and relatively less intense training.

General Athleticism Helps Young Athletes

That general athletic training also doesn’t overstress the body. It doesn’t limit the skill set being developed later. Maybe at 8, they are playing soccer, but by 10 they decide they like volleyball. That library of basic athletic movement skills can be drawn on for most sports.

However, that high-level athlete is entirely different. Just doing general skipping, jumping and hopping won’t improve their performance. Our Olympic athletes generally have a decade or more of training. Their window of opportunity to improve is much smaller than that 8-year old.

Sissoko Tottenham Hotspur
Fundamental athleticism is great to keep elite players functioning, but it won’t help them improve sports skills.

Whereas a little training effort may have lead to 75% sports improvement for the 8-year-old, the elite athlete has to put in a lot of work to even improve 1%.

They have to put in more effort, endure more wear and tear on their body and manage large emotional and mental stresses. There is no room for waste, so training becomes more and more specific. Sport-specific training is essential for efficiency and effectiveness at the elite level.


Long Term Athlete Development Model

Velocity employs a long term athletic development model that helps address the need for specificity. It builds specificity from the ground up through a foundation of athleticism. At the early stages, this provides the transfer of training without the repetitive stress and strain of high specificity.

As an athlete progresses, they continue to benefit from the transfer of training. They accomplish this by focusing on using different types of strength and building athletic movement skills. This gives them a larger library of skills to take to sports practice and put into their technical skills.

As they gain some additional training experience, they can start to become more specific to their sport, their position, and their individual needs.

Long term athletic development velocity programs

READ: How Elite Organizations Use A Long-Term Model To Build Champions

So, start at the start. To use an analogy, we don’t start future professional drivers in Formula 1 cars at age 8. It’s specific, just not effective. You start them on a far more basic type of car and track. Any young athlete training outside of their sports practice should employ an LTAD model of sport-specific training.

Athletes should progress from general to specific based on the years of training experience of the athlete.


Understanding Your Sport

As an athlete, you don’t have to be a sport scientist. Still, you should be learning about your sport as you train. Hopefully, you are getting that in part from your coaches. That means both your sport and performance coaches.

To determine what ISspecific to a sport we strive to understand sports. The Velocity High-Performance Team utilizes experts in performance, sports medicine, biomechanics, sports science, and more to determine this along with the sports coaches.

While there can be thousands of components to elite performance, they can be grouped into some big buckets to understand.

Sports Skills

When it comes to the actual competition, it’s the athlete’s technical and tactical skills that clearly rule the day.

Technical skills are what we typically think of as their sport skill. Dribbling a ball, executing a gymnastics routine or hitting the ball. These skills are developed through thousands of hours of deliberate practice.

wrestling sport-specific skills
Sport skills include both technical and tactical skills. For instance, a wrestler needs the skill to exact a move, but also needs to know when to choose that move and use it.

Tactical skills are the athlete’s abilities to judge and analyze elements of the game. It’s also their decision making in those moments.

Can the linebacker read the lineup of the opposition and the strategic situation to diagnose what play is most likely?

Can the rower recognize the other boat picking up the pace and consider the distance left and their own energy reserves?

Awareness of what’s happening, analyzing it, and making a strategic decision is an often under-appreciated skill in sports. However, it can make the difference between being a Hall of Famer and not even having a career.

Physical Abilities

When the sports skills are equal or close it may be physical skills that separate athletes. In fact, at some point, their ability to develop technical skills can be affected by their physical abilities.

For instance, consider a quarterback or pitcher trying to perfect their throwing technique for more velocity. As they work with sports coaches they may be trying to move through new ranges of motion for better movement efficiency. However, if their underlying mobility isn’t adequate, they won’t be able to execute that technical model.

The same could be true for strength or movement skills. Athletes need a foundation of physical abilities to build on. This is what we often refer to as “athleticism.”

Mindset

The third component of sports competition is the athlete’s mindset. We use this term to encompass their cognitive processes and brain’s physiological processing. When we ask world-class athletes and coaches how much of the game is mental, they typically respond anywhere from 50% – 99%.

nick foles
A winning mindset includes the resiliency to overcome obstacles.

Of course, you can’t win mentally if you don’t have sports skills or physical ability. What this tells us is that those things will lose importance if your mindset isn’t right.

With this model of performance, you can begin understanding what is needed in your sport.

You can begin looking at what you need as an individual to succeed. If sport-specific training is about achieving results in the sport, then you need to know what leads to success in the sport.

READ ABUT IT: Resiliency Is A Key Part of An Athlete’s Mindset. Here’s How To Build It.


Sports Training Is The Truest “Specific” Training

In the end, the thing that tends to increase your sports skills the most is playing and training your sport.

Now a lot of performance coaches hate to hear this, but it’s true. Playing your sport and training your technical and tactical sports skills is as specific as it gets.

However, there are often limits on this. Physically from energy systems and repetitive motion. Access to coaching time or field/court space. Weather. Ability to use deep focus on the same skills.

These are all things that can limit the ability of the athlete to just practice more for continued gain. When you cant do the sport more it makes sense that other training could help you get better.

Specific To Sport, Position or You?

So if we are talking about sport-specific training that is not just practicing the sport itself more

With the goal of improving performance, you need to start considering how specific to get. Is sport-specific training really enough?

For instance, a lineman and defensive back in football are both in the same sport. Do they have the same specific demands?

Not even close.

That’s an extreme example but it carries over into a lot of sports. Different positions may have some unique specific requirements.

Then we can take this further to be more specific. If we look at different players in the same position, they may have different styles. Let’s say the soccer forward who is all finesse and amazing moves versus the power player who relies on speed and jumping higher to win in the air. Same sport, same position, different styles.

Go a step further and we can start to look at your individual genetics and predisposition. What about your unique history of injuries and physical qualities. When that window of opportunity gets smaller, these things come into play.

In the end, the level of specificity in training is inverse to the level and training age of the athlete. The younger and more developmental the athletes, the more benefit from general training.

The more elite the athlete with years of training, the more specific training need to be.


Sport-Specific Training

We have already acknowledged that skills and tactics are best improved in sports practice. However, we are focused on determining what type of physical training will be the most specific for your sport.

Training that leads to better performance. Less injury. Longer careers.

So. what physical qualities are specific to any sport? Let’s start by defining some broad categories; speed, strength, stamina, mobility, and resiliency.

What Is Sport-Specific Speed?

Speed and agility are valued in almost every sport. To et specific, you can start understanding different aspects to speed in sports.

As you try to understand what makes speed specific to your sport you can start by thinking about how much of the movement is straight ahead versus laterally and diagonally?

That’s an important factor. Is there a lot of straight-ahead sprinting like a wide receiver in football or a soccer forward? Or is it more sideways or mixed movements? The type you see in sports like basketball and tennis as examples?

Athletes developing the fundamentals of acceleration at Velocity in Greenville, SC.

There is a lot of crossover in training these. It’s especially true at earlier stages of sports development, but as you go up in level the difference is greater and training techniques more specific.

How often do you change directions in your sport? That’s another way to determine your sport specific training needs. A player reacting to opponents or trying to lose them may make a lot of change of direction movements.

What Is Sport-Specific Strength?

Too often athletes think that strength is how much weight you can lift on a barbell. For an athlete, strength is so much more than that.

That big lift barbell strength is often useful and represents one type of strength. You need to understand that there are different types of strength and which you need in your sport.

Strength is simply the act of applying force. Applying force to the ground, ice or water. Force applied to your bike, bat, racquet or a ball. Applied force to move your bones and joints into different positions.

Strength not only moves you, but it also holds you together. Your muscles, fascia, and connective tissue use contraction to make you function. Strength protects you when you absorb impact. Impact from striking the ground when running. Internal stress from decelerating your arm after throwing or swinging the stick. Impact from opponents or landing on the ground.

Every Athlete Needs Strength

So EVERY athlete needs strength. The devil is in the details.

Strength is simply about generating and applying force. Athlete’s need to develop several types of general and sport-specific strength

Those details are about how fast it’s applied. The direction and motion. The muscle groups. And it’s the transition from one strength type to another. This is what defines strength for an athlete.

To help illustrate this, let’s consider the strength needed by an NFL lineman and a tennis player. Do both need to be strong?

Many people may jump to the conclusion that a lineman needs strength and a tennis player doesn’t. After all the lineman is pushing around another 300lb human who is really strong. The tennis player is only moving their body and swinging a little racquet.

If we are thinking in terms of something like a 400lb back squat this might be relatively accurate. That is what we would call Maximum Strength. The ability to contract slowly (compared to many sports movements) and at very high force levels.

The tennis player does need some of this strength type, but they also need to cover the court really quickly. The tennis player is lighter and goes side to side changing directions. Those changes are going to require more eccentric strength. The ability to absorb their momentum going one way, stop and go back the other.

This is also strength, but a different type. Sports generally requires multiple types of strength, with some more important than others. Strength training starts to become specific when you train for specific types of strength.

READ MORE: There are specific types of strength for athletes.

What Is Sport-Specific Stamina?

For many people, this may be one of the most obvious. A marathon runner needs different stamina than a 100m sprinter. The Olympic weightlifter has different energy needs than the 1500m freestyle swimmer.

It does get harder as we move to team sports and activities that are not steady-state or really short. The body essentially has 3 main energy pathways and it uses them in different ways for the sport.

To condition for this type of sport, we can train multiple energy systems together so it mimics the sport. At other times we focus on building up one more than others.

It’s not only sport-specific, but position, style of play and individual specific. Even in a sport like basketball, two teams may need very different conditioning based on their style. A high pressure or fast-break style will require different conditioning than a slower tempo, ball control focused team.

What Is Sport-Specific Mobility?

To produce your sports technical skills, your body needs to achieve certain body positions. You need to move your joints and muscles efficiently through specific ranges of motion.

If you are limited by the flexibility, stability or mobility of your body, you might not be able to effectively develop that sport skill.

Most people can understand the difference needed in mobility between an elite gymnast (huge mobility demands) compared to a cyclist (only a few specific areas need mobility).

During training, sport-specific mobility comes from more than only stretching certain areas. Even effective dynamic warm-ups and full range of motion strength training help.

mobility vs flexibility
Athletes need mobility, flexibility and stiffness in different amounts based on their sport.

RELATED: Mobility and flexibility are different. Athletes need to understand how.


How to Use Sport-Specific Training for You?

First of all, understand you are right to want sport-specific training. Which means reaching your goals and improving performance in a sport.

Why wouldn’t you want that?

Sports specific training transfers to better performance, lower injury risk and increased competitive longevity.

Therefore, you need to find training that will get results and not waste your time and energy.

1. Your Athletic Development Level

  • That means to first consider your level. A young athlete will get an effective transfer from developing all-around athleticism. Start at the start if you haven’t been training for years.

2. Your Sport Demands – Speed, Strength, Stamina

  • Next, you need to understand what your sport demands. A good coach and performance system should actually help teach you this and guide you to a better understanding of your sport.

If you are training right, you’re going to see a lot of benefit for a long time. Moreover, this requires the right;

  • type of movements
  • strength qualities
  • energy systems development
  • needed mobility

3. Your Individual Needs

  • Finally, if you want to see benefits, your training needs to address your specific needs. If you’re slow, get faster. If you get injuries often, become more resilient physically.

This is particularly true when it comes to sport-specific strength training. Everyone can get stronger, but are you building the right type of strength? Do you know your own genetic disposition and what type of strength will help you on the field?

Sport-specific training is needed. Just make sure you know what that means and when. Ask questions to make sure your coaches do as well.

What Is Sports Specific Training?

what is sport specific training

Sport specific training is a constant topic of discussion among athletes, parents and coaches.  For the Performance Team at Velocity, the question of what is sport specific training comes up daily. It happens in local performance centers as well as with our coaches at Olympic training facilities.

When we discuss “sport specific” a lot of different ideas emerge.  Doings things that visually look similar to the sport are often called sport specific.  Maybe they are drills that use the sports equipment; balls, bats, gloves, sticks, etc… 

For others, they think of examples of like practicing sports skills with rubber bands on, wearing weight vests, or hooked up to bungee cords and devices.

Still, some coaches think of trying to duplicate the sport in the weight-room with the reps, weights, and muscles used.

So, with these competing ideas, what is sport specific?

Sport Specific Training for Elite Athletes

At the elite level there is a lot of talk about sport specific training. This isn’t just a discussion with developing athletes and their parents. 

Those examples of sport specific training do occasionally come up in our elite teams. However, the discussion tends to be more focused.  The administrators, coaches and athletes care about one thing; results.

swimming specific training
With a small margin of error in many elite sports, training has to be specific

The margin for error in elite sport can be incredibly small.  Hundredths of a second can be the difference between a Gold medal, and not being on the podium at all.

An athlete facing that can’t waste time or energy.  They can’t add wear and tear to their body if it doesn’t give them better results in return.

Sports specific training transfers to better performance, lower injury risk and increased competitive longevity.

Transfer of Training

This brings us to the concept of “transfer of training” in sports.  Is the training you are doing transferring to improved performance in your sport? 

Is it transferring to lower injury risks so you can be in the game competing?

Is it helping to extend your career for more years?

Those are the questions that we ask of every component of training at the elite level.  As an athlete has more years of training, this becomes harder and harder to achieve.  This is related to their “window of opportunity” for different qualities.

Windows of Opportunity

An athlete’s opportunity to improve a skill or ability is not infinite.  A human will never run 100mph or vertical jump 20 feet.  There are limits to human performance.  So, lets’ apply this concept to a physical ability.  Sprinting.

To make our point let’s get a little extreme. 

A 3 year should know how to run.  Of course, they won’t be that fast compared to an Olympic sprinter.  

usain bolt sprint start
An Olympian has developed to such a high level, their room for improvement is usually very small.

If we consider the Olympic sprinter near the top of human potential, then the 3 year has a huge window of opportunity to improve.  The Olympian is nearing human limits, so their window of opportunity is very small.

This concept has a profound effect on the transfer of training.  At early level doing general things will bring big dividends. 

A soccer team of 8-year-olds will improve their soccer skill just by becoming more coordinated.  Doing things like skipping, jumping hoping and running will increase their basic athleticism.

They get a lot of “transfer” (improvement in their sport) from that unspecific and relatively less intense training.

Sissoko Tottenham Hotspur
Fundamental athleticism is great to keep elite players functioning, but it won’t help them improve sports skills.

That general athletic training also doesn’t overstress the body.  It doesn’t limit the skill set being developed later.   Maybe at 8 they are playing soccer, but by 10 they decide they like volleyball.  That library of basic athletic movement skills can be drawn on for most sports.

However, a professional player is entirely different.  Just doing general skipping, jumping and hopping won’t improve their performance. Our pro athletes generally have a decade or more of training.   Their window of opportunity to improve is much smaller than that 8-year old.

Whereas a little training effort may have lead to 75% sports improvement for the 8 year old, the elite athlete has to put in a lot of work to even improve 1%.

They have to put in more effort, endure more wear and tear on their body and manage large emotional and mental stresses. There is no room for waste, so training becomes more and more specific.  Sport specific training is essential for efficiency and effectiveness at the elite level.

Long Term Athlete Development Model

Velocity employs a long-term athletic development model that helps address the need for specificity.  It builds specificity from the ground up through a foundation of athleticism.  At the early stages this provides the transfer of training without the repetitive stress and strain of high specificity.

Long term athletic development velocity programs

As an athlete progresses, they continue to benefit from transfer of training by focusing on using different types of strength and building athletic movement skills.  This gives them a larger library of skills to take to sport practice and put into their technical skills.

As they gain some additional training experience, they can start to become more specific to their sport, their position and their individual needs.

How To Use Sport Specific Training

Start at the start.  To use an analogy, we don’t start future professional drivers in Formula 1 cars at age 8.  It is specific, just not very effective.  Any young athlete training outside of their sport practice should employ an LTAD model of sport specific training. 

Begin by building physical literacy and then basic athleticism. As the years of training increase, make the specific qualities more specific. Only at high levels should highly specialized training to mimic sports movement be used.

Progress from general to specific based on the years of training experience of the athlete.

RELATED CONTENT FOR YOU:

The Importance of In-Season Training: Part 3

Inseason Training

In part two of the ‘Importance of In-Season Training Installment,’ I discuss what happens to an athlete’s young body when they stop training. However, to re-cap, we must first revisit the main reasons why in-season training is so necessary.

  1. In-season practices are often far less physically demanding than off-season practices, which leads to drastic de-conditioning
  2. For athletes who did not maintain adequate strength training in-season for as little as one to two days per week, most strength gains made in the off-season will decrease massively!
  3. Research has shown that at the professional level in-season training reduces injury risk significantly, enhances individual playing time within squads and actually leads to in-season performance gains as opposed to pure maintenance.
  4. Off-season and In-season training are akin to opening an ‘athletic bank account.’ The off-season is where athletes make the most ‘deposits’ in the form of strength training, conditioning, and physical preparation work. Competition is where athletes make the most ‘withdrawals.’ In-season training allows athletes to keep their bank accounts top-upped so that they don’t ‘run out of money’. When they become overdrawn it results in fatigue and potential injury.

Even though this post is not about scare tactics per se, examining point four further, is important. Athletes and parents alike need to understand what actually happens to their body when they stop training in-season.

READ: The Importance of In-Season Training, Part 1

READ: The Importance of In-Season Training, Part 2

Just Like Post Number One, If You Don’t Use it, You Do Lose It

In sport science, the technical term for loss of strength, power, speed, and conditioning is known as involution. In other words, when resistance and speed training stop, the body will, revert to its former self.

To illustrate, let’s consider where a young athlete’s performance gains derive from. Structured strength and conditioning training generates a host of physiological changes their body undergoes as a function of the training process. These include (but are not limited to):

  • Increased neural connections: Strength training is ‘brain training.’ By learning how to lift weights safely, an athlete can make better neural connections within the motor cortex of the brain. This creates better synapses as well, which leads to enhanced focus, and mental clarity. This is why so many studies have actually linked strength training to better grades and performance in the classroom as well!
  • Increased neuromuscular coordination: Like the brain, resistance training allows athletes to create new neural connections, which means more muscle is activated in the body to cut, jump, sprint, block, tackle, etc. as well as this muscle being activated in a more coordinated fashion. Strength training makes young athletes move better and with much higher degrees of muscular coordination.
  • Increased oxygen delivery to muscle tissue: Through conditioning and strength training, athletes are better able to uptake and use oxygen in the body, which fuels muscle contractile activity. In other words, they can run and compete at higher speeds without succumbing to fatigue!
  • Improved body composition: Weight training and conditioning leads to reductions in body-fat, which means athletes can move and compete more effectively and efficiently. Reductions in body-fat are linked with better health markers and declines in disease risk all-together.

Given the multitude of positive performance benefits, the problem with stopping training during the in-season is that all these incredible adaptations can become reversed! Yes, all those neural connections that the athlete made as a function of resistance training can become undone with time.

Hence involution can be seen as the technical term describing the physical processes outlined in part 2 of this installment, which is effectively what happens when an athlete begins to ‘spend money from their bank account’ without ‘depositing’ any more through in-season training.

The good news, however, even in as little as one session per week an athlete can maintain all the positive performance gains listed above!

Hence in-season training takes on an even higher degree of significance as it allows athletes and parents to ‘safe-guard’ all the hard work that went into a successful off-season program.

As a result of in-season training, it is now appropriate that the four essential ‘rules’ of in-season training are identified.

  1. Train heavy but at a reduced volume: Many athletes and even coaches mistakenly believe that athletes have no business lifting heavier weights in-season. Unfortunately, this attitude leads lots of athletes to sub-optimize their in-season program by lifting weights that aren’t heavy enough to make them better or even maintain the progress they’ve made up to this point in time in the season. Hence, involution can also happen if an athlete is lifting or training hard enough to stress their bodies! However, by doing fewer sets or even taking a little bit of weight off (i.e., not exceeding 85-90% of max-effort for a majority of a program) athletes are able to train hard, but not encounter the fatigue and soreness that will detract from the competition. Hence, training hard and smart through reduced volume represents a winning strategy!
  2. Focus on Recovery: As stated in a previous installment, the game can take a lot out of a young athlete’s body. Microtrauma, soreness, and dehydration can lead to significant performance decrements. Hence, focusing even more on sleep, nutrition, and hydration will go a long way toward recovering from the stresses of in-season training, competition, and practice.
  3. Address aches and pains before they become full-out injuries: The saying ‘no pain, no gain’ is as old-fashioned as the knee-high socks, and leather football helmets are worn by athletes when the saying first took hold. Truthfully, pain is the body’s way of telling you that something is wrong and needs to be fixed. If an athlete feels significant pain in the weight room or at practice, I tell them to seek out a qualified athletic training or sports medicine professional. Furthermore, a qualified coach will ensure athletes use exercises that minimize stress and strain on the joints during the in-season period, as ligaments and tendons take even longer to recover then muscles.
  4. Don’t Be Reluctant to ‘Live to Fight Another Day’: A standing rule I have for my athletes is that if they can’t go harder, pack it in. In other words, even with reduced training volumes, focused recovery efforts and exercise selections that minimize stress and strain on the joints, if they can’t put in 100% effort in the weight room then that is their body telling them they need to rest, so instead they should go home, recover, and try things again the next day. The most successful athletes are the ones who listen to their bodies and train hard and smart!

In closing, in-season training is one of the single most crucial time, and energy investments an athlete can make in ensuring continued success. Numerous research studies have demonstrated the superiority of in-season training to non-training, with research likewise showing that a lack of training leads to significant reductions in performance, as well as a simultaneous increase in injury risk. As a result, a robust in-season training program is one that allows athletes to continuously ‘top-up’ their ‘athletic bank account’ by utilizing a systematic approach that strikes the right balance between hard-work, intensity, and recovery.

If a young athlete is truly serious about gaining a performance edge that in-season training is simply non-negotiable.

OTHER ARTICLES YOU MIGHT LIKE:

You Need to Know: Strength Is More Than Just Weight On a Barbell

Ultimate Guide to Speed Training

Why Do You Want Sport Specific Training?

Do You Want Sport Specific Training

The most common request we get from parents and athletes is for sport specific training. 

Now sometimes as professionals, we want to roll our eyes when we watch the latest Instagram post that is some guru doing “sport specific training.” 

Why?

Because just putting a stick in their hand or making them do their sport’s technical drill with a bungee cord is NOT sport specific training.

In fact, we aren’t against sport specific training at all. 

However, as professionals, we know there is a lot more to being sport specific than you may think. That’s why we ask: “Why Do You Want Sport Specific Training?”

We know because when we work with professionals and Olympians, the purpose tends to be specific…play better and WIN!

Why Do You Want Sport Specific Training?

Whenever an athlete wants a training program, one of our essential questions is: Why Do You Train?

It is one of the foundations of Velocity’s philosophy. We strive to understand every athlete’s WHY? What do they want to achieve in their sport? What do they want to feel? What are they willing to work for? 

What does this have to do with sport specific training? 

It’s important because it gives our coaches context.

Coaches have a responsibility to help guide you. We are trying to guide you to the solutions that will give you what you want. That’s why you come to us for help. Any coach who doesn’t seek to understand your goals isn’t a real coach.

If we don’t have any context to your question about sport specific training, we are making assumptions. 

Those assumptions could be wrong.

Do you want sport specific training because you have potential in the sport and want to play at a high level? Some athletes are just trying to make their team and get playing time.

Maybe you want to train specifically to reduce your risk of injury. Or perhaps you’ve had an injury and are trying to get back to your performance level before.

Perhaps you’ve tried some training that wasn’t “sport specific” and you didn’t see results, or worse it hurt your game.

All of these goals are different in ways. Even though a lot of the training may be the same for athletes in the same sport, some should be different. Different choices in training methods come from information such as those goals.

A coach needs to understand this.

Meeting Your Sport Specific Goals

Sport specific training is really; your goal specific training

If a coach doesn’t really understand your goals, then your training might be off target.

Athletes will generally seek sport specific training to meet their particular goals in the sport. If your coach doesn’t try to understand you and your goals, then they might be missing the mark. 

That’s not professional coaching. That’s lazy and ill-informed.

We start by redefining your underlying motivation for sport specific training; 

You want results in your sport. 

You don’t want to waste time and effort on training that doesn’t contribute to those results.

The purpose of sport specific training is to use training to effectively and efficiently reach your goals in the sport. 

Putting It Into Practice

To understand your goals and needs the first step for a coach is to ask. Coaches have to do more than just ask “what do you want?” Professionals know how to dig deeper and uncover what you want. We find where your motivation comes from.

Then we start to assess your level and current abilities to determine what level of specificity is best and how to deliver it.

WANT TO LEARN ABOUT TRAINING SPEED: The Ultimate Guide To Speed Training

RELATED CONTENT FOR YOU:

The Importance of In-Season Sports Performance Training: Part 2

Inseason Training

By: Tim Hanaway

Sports Performance Director, Velocity Norwood

In part one of this installment, I set the landscape as to why in-season training was so necessary for youth athletes. In a nutshell, the answer boils down to two main points:

  1. One, in-season practices are often far less physically demanding than off-season practices, which leads to drastic de-conditioning
  2. for athletes who did not maintain adequate strength training in-season for as little as one to two days per week, most strength gains made in the off-season will decrease massively!

Nevertheless, in looking at the other effects of in-season training, or more specifically, a lack thereof, it is essential to note that lack of physical preparation during in-season periods often results in significant increases in injury rates.

For example, in a study published in the British Journal of Sports Medicine, a group of British researchers noted that when looking at in-season resistance training on youth professional soccer players, English Premier teams that employed in-season strength and conditioning programs with their athletes spent nearly $494,000 less on sports medicine costs than programs that did not use in-season strength training!

Furthermore, in using one of the teams from the research design as a case-study, the Premiership team in question rose their player availability to 95% (compared to other teams) meaning the coaches could basically pick from their best players throughout the season!

Finally, in adding even more metrics back to the original points listed in installment one of this article, performance metrics increased by as much as 5% when athletes trained as little as 1x per week, compared to nearly doubling (11.6%) when athletes trained 2x per week.

Call to Action:

As a result, the above findings highlight the fact that in-season training reduces the risk of injury drastically, while also providing coaches with the chance to field their best team at all times. Furthermore, athletes who participate in in-season strength training can actually improve their performances throughout the season anywhere between 5 and 12%!

Therefore, for athletes and coaches that are serious about taking team and individual performances to the next level, there is no substitution for in-season training.

Up to this point, in-season training for youth athletes has proved crucial for a multitude of reasons:

  • In-season practices are often far less physically demanding than off-season practices, which leads to drastic de-conditioning
  • For athletes who did not maintain adequate strength training in-season for as little as one to two days per week, most strength gains made in the off-season will decrease massively!
  • Research has shown that at the professional level, in-season training reduces injury risk significantly, enhances individual playing time within squads and actually leads to in-season performance gains as opposed to pure maintenance.

However, in spite of all these positive in-season gains, much confusion still exists with in-season training compared to off-season training! For instance, a question I get asked by parents often is “what is the difference?”

Understanding Your Bank Account

In providing an easy-to-understand analogy, I like to explain to parents that off-season training is very much like opening an ‘athletic savings account.’

With every resistance training, speed, agility, and conditioning session an athlete participates in during the off-season, the athlete is effectively depositing into their personal ‘athletic bank account,’ growing their own personal ‘spending’ power on the field, court or ice in the process.

In other words, off-season training is all about maximizing physical preparation. Given that here at Velocity we train our athletes for speed using our ‘Big Force, Short Time’ formula, using the off-season to build strength and power through resistance training and Olympic lifting allows our young athletes to change their bodies by improving coordination and re-training their nervous systems so that their muscles can produce more force in less time, resulting in quicker reaction times and more explosive skill execution.

As a consequence, the more training an athlete has in the off-season, the more physical ‘currency’ they can draw upon during the competitive season to maximize performance!

Hence, a robust off-season program is characterized by the following:

  • Strength and Power Training using full-body, free-weight movements
  • Speed & Agility Training o improve first-step quickness and top speed mechanics, to enhance coordination, multi-direction reaction times and straight-line speeds.
  • Conditioning Training to fuel performance and reduce recovery times so that athletes can go harder for longer.

Finally, because athletes performing off-season programs do not usually play as many competitive games means more significant time, attention, and detail can go into the off-season program.

How to Withdraw from an Athletic Bank Account But Not Go Broke In the Process!

Given that in-season training is all about putting as much physical preparation currency into an athlete’s ‘bank account,’ competition is where an athlete makes their withdrawals.

For example, every time an athlete goes hard in competition, their muscles and body break down a little bit due to a host of physical processes and microtraumas. Muscle soreness, for example, is often attributed to small microscopic tears in muscle cells that take time, hydration, and proper nutrition to heal.

When an athlete performs in-season training, they continue to ‘top-up’ their athletic bank account, meaning they can continue to go harder, for longer in the season. Athletes that fail to perform in-season training; on the other hand, effectively ‘run out of money,’ they don’t recover as well and instead become more susceptible to injury.

However, because in-season training needs to be balanced with competition means it is characterized by the following:

  • Less training volume: In other words, instead of doing 5 exercises, athletes might instead do 3 to preserve more energy.
  • Less focus on conditioning: Even though practices aren’t necessarily as intense, competitions still are so athletes in-season will condition but not to the same extent as in the off-season.
  • Less focus on speed and agility: Like conditioning, athletes can get plenty of agility and speed work during games and practices. However, certain times they won’t so supplementary speed and agility training will feature, albeit in a reduced format.

In closing, the main difference between off-season and in-season training primarily comes down to emphasis and volume. Like a savings account, off-season training allows athletes to open their own ‘athletic bank account’ of physical skill and preparation that they can withdrawal from all season long.

Failure to perform off-season training (opening the account) and maintain it with fresh deposits (in-season training) leads to significant reductions in sports ability. As a result, it is imperative that athletes train during the off-season and in-season to maximize performance, as well as make continued gains every year.

Is Youth Strength Training Safe?

Strength Training Is Injury Prevention

The Importance of In-Season Sports Performance Training: Part 1, If You Don’t Use It You Lose It!

Inseason Training

By: Tim Hanaway

Sports Performance Director

Velocity Norwood

Strength, in my opinion, is the single most important physical attribute that an athlete can possess as strength is literally the precursor to all forms of athleticism. Want to get instantly faster, more agile, quicker, more explosive, and maintain more endurance? Strength training will significantly enhance all of them. Adopting a ground-based, functional strength-training program that utilizes upper and lower-body, compound movements is genuinely the key to athletic success and longevity in my humble opinion.

The biggest challenge with strength and power training is that all the amazing benefits we associate with it from a scientific standpoint (i.e. increases in force production, speed of muscle contractions, inter-muscular coordination, enhanced ground-reaction time, etc.) are in fact reversible. Yes, you read that, right! All the hard work and performance gains an athlete makes during the off-season, or pre-season can, in fact, go away when this type of training is not maintained for prolonged periods.

The realities of In-season:

The above fact is one that I find often takes young parents and athletes by surprise. “How could this be?” A father might ask, as they then explain that their son or daughter plays for 2 travel teams, a rec team and their school team. “Surely, all that practice and hard-work would go a long way towards enhancing fitness?”

The truth is that more often than not, practices are simply not focused or intense enough in-season to stress a young athlete’s body to develop or maintain strength or fitness levels.

To illustrate this point, let me give you some perspective: A head coach is more often than not focused on their own “one thing” during the season, which is winning. Simply put, priorities change once the season starts! Head coaches are instead more focused on tactics, plays and improving all the areas of need highlighted in the previous week’s game, compared to fitness and strength gains.

In using basketball as an example, if the team didn’t get enough rebounds during the last game, you better believe the coach is going to have the athletes perform lots of ‘box out’ drills in order to re-enforce technique and try to remedy the situation. Likewise, if the team’s offense wasn’t functioning properly, chances are that same coach is going to spend a significant amount of time in practice that week walking through/going over all the plays at a moderate pace/intensity in order to “iron out the kinks” and fix any confusion.

So what does this mean from an observational/practical standpoint? Well, it most likely means that the 5 starters on the team will go through the plays at a moderate intensity (at best), with the remaining 10 players standing around and watching from the sideline for prolonged periods of time. Yes, the truth is, go to any team practice in-season and chances are that you are going to witness a significant amount of standing around, talking, and direction from the coach, with much less time dedicated to all-out scrimmages or drills attempting to simulate game-day conditions, compared to pre-season activity. This same trend is far from uncommon and readily identified within a scientific study conducted by Wellman and colleagues (2007) that looked to compare the differences between pre-season and in-season practices and game-times among NCAA Division I football players.

The fact is, whether discussing the height of collegiate sport or your average middle-school or high school team, studies like this one show that athletes simply do not experience the same kind of workloads during the in-season period compared to pre-season, as much more time is instead dedicated to tactics. So, what is the outcome of this rather apparent paradox if an athlete is no longer strength and power training, while simultaneously experiencing even less fitness training within a typical in-season practice?

In a study performed on elite male rugby and football players, McMaster and colleagues (2013) found that strength levels have a tendency to decrease after a three-week period when no form of strength activity is maintained. In addition, according to Meylan and colleagues (2013), the decay rates of strength parameters for youth athletes can show an even more marked difference, especially for those athletes who have not yet hit their growth spurt. According to the researchers, these athletes lost more strength and forgot it even quicker compared to their peers who have had already hit their growth spurt!

The Good News:

As dismaying as this information may be, the good news is that there are some very practical solutions that athletes can undertake in order to mitigate the negative effects of the paradoxical in-season strength and fitness loss. For example, If the mantra ‘use it or lose it’ is clearly relevant in this case, the simple solution, of course, is to ‘use it’ by strength training in-season! However, in speaking with the same parent from the above example that is already questioning how they could possibly train 4x per week in-season, when they are already juggling so much between the numerous teams and practices their son/daughter is already participating in, the good news is that you do not need to train nearly as long or as frequently in-season in order to maintain all the performance gains made in the off or pre-season!

To illustrate, in a study conducted on male handball players (Hermassi et al. 2017), researchers found that in as little as two sessions per week athletes were able to maintain their performance gains, while another study found that so long as intensity was kept high, athletes (in this case rowers) were able to maintain their performance gains in as little as one session per week (Bell et al. 1993).

Call to Action:

So now that the negative effects of training cessation have been presented, and the fact that as little as one session per week can effectively maintain strength and fitness gains throughout the course of a season, the question beckons, what can you do to safe-guard and maximize your son or daughter’s performance gains?

The answer is

Maintain an in-season strength and conditioning routine that can be executed in a little as one hour per week.

Our experience – and the experience of the athletes who train with us – confirms that this is all it takes to make sure they finish the season just as strong as they were at the start. In addition to meaning these athletes perform well during the season it also means that their strength improvements do not have to be regained at the end of each season, effectively accelerating their performance at a rate greater than their peers.

References:

Bell, G. J., Syrotuik, D. G., Attwood, K., & Quinney, H. A. (1993). Maintenance of Strength Gains While Performing Endurance Training in Oarswomen. Canadian Journal of Applied Physiology,18(1), 104-115. doi:10.1139/h93-010

You need to know: strength is more than just weight on a barbell

Mobility vs Flexibility: They Are Different And Why You Care

mobility vs flexibility

People are often confused about the differences between mobility vs flexibility.   It matters because it affects your athleticism and injury risk.  Hope that gets your attention because it’s often the neglected and mis-understood step-child of training.

You probably recognize that athleticism has multiple facets.  Strength, speed, and stamina are a few.  To be fair, most people would probably include flexibility in there as well. 

Maybe you were taught to stretch in gym class back in the day.  Maybe you’ve read enough articles from trainers to know about foam rolling.  How about endless pics of yoga and mobility work on social media?

You know there’s something that you should probably be doing, but why are some people talking about mobility and others flexibility.  Aren’t these the same thing? 

Mobility vs flexibility: Is there really a difference?

Yes.  Mobility and flexibility are related but different things.

However, as you scroll through feed and listen to trainers talk, they are often used interchangeably.   Most trainers in the fitness and performance training fields don’t even know they are different.

Traditional definition in sports medicine they would be;

FLEXIBILITY: The ability of a muscle to be lengthened.

MOBILITY: The ability of a joint to move through a range of motion

However, this is not what we are discussing here.  We are not as interested in the traditional definition. We are more interested in the modern concepts that apply to injury prevention and performance.

Modern concept definition:

FLEXIBILITY: The ability of a muscle to be lengthened.

MOBILITY: The ability to control movement through a range of motion

Similar, but some key differences.  The concept of mobility incorporates flexibility, but not necessarily vice-versa.  The key for athletes is mobility.  Flexibility isn’t enough.

Mobility is a term and concept that encompasses a range of factors affecting your movement including:

  • The tissues ability to lengthen
  • The joint ability to move
  • The nervous systems ability to relax and allow movement
  • The neuromuscular systems ability to activate muscles and control movement through all ranges of motion.

Flexibility is Important for Mobility

You do need enough flexibility in your muscles to obtain functional and sport specific mobility. This matters, as you are considering whether to work on mobility vs flexibility.

Flexibility is passive. It’s your ability to move your connective tissue with the help of another person or tool, or gravity.  Your muscles passively allow the movement to happen. 

muscle are elastic and should stretch like a rubber band

Think of flexibility like a rubber band. When you pull both ends, it stretches.  It’s flexible. If it doesn’t stretch, it’s inflexible. If it’s too inflexible, it could even snap. It’s the same thing with muscles.  They have elastic components and are designed to move through a stretch.

Flexibility also requires your joint capsule have a full range of motion as well.  It doesn’t matter how stretchy your muscles are if the joint itself won’t allow the movement.

Since. mobility includes moving through a full range of motion, you are going to need to have some flexibility in those muscles to be mobile.

Mobility for Better Movement

The problem comes in when people think being flexible is enough.  Sure you can stretch your body into all kinds of positions.  Your muscle clearly have flexibility, but can they control it?

A person with great mobility is able to perform movement patterns with no restrictions. The movement is efficient and there aren’t any compensations.  They have the range of motion and the neuromuscular control and strength to move through the pattern.

athletes need mobility to move efficiently

On the other hand, some people can perform a movement pattern successfully, but they compensate.  They may fire some muscles in a different sequence, use different muscle for stability or avoid certain joint position.   

A flexible person may or may not have the stabilizer strength, balance, or coordination to perform the same functional movements as the person with great mobility.  This goes back to some of the fundamental differences of flexibility vs mobility.

Control.  Control comes through the strength in your muscles.  Control comes through coordination of those muscles.  Control comes from properly functioning stabilizers.

RELATED: 4 Myths About Muscle Pliability You Need To Know

How Do You Improve Mobility?

Mobility is important, and flexibility is a part of that. That doesn’t usaully mean you need to spend an extra hour in the gym every day.  Incorporating a steady stream of exercises for both flexibility and mobility into you training plan will go a long way.

In addition to a general approach you should prioritize extra time for certain areas.  You may already know the areas or your body that need to improve.  Or maybe its specific to your sport.  A comprehensive profile from a professional goes a long way towards targeting the areas that will get you the most bang for your buck.

Methods To Increase Mobility

  • Self Myo-Fascial techniques: Sometimes these may be excruciating but can be very effective.  Foam rolling, lacrosse balls and other tools are basically a type of self-massage. These techniques help you release tight spots in your muscles.
  • Mobility Drills: These are exercises that are specifically geared towards training your range of motion around joints. They involve actively moving, contracting and relaxing muscles through the joints range of motion.  Some of these may isolate, while others involve multi-joint movement patterns.
  • Stretching: This may or may not be necessary. If you’re naturally a very flexible person, stretching can make your joints more vulnerable to injury. However, if you’ve always been stiff, and it’s stopping you from moving well, you may benefit.  Some targeted stretches may be enough both as part of the warm-up and separate from it.
  • Dynamic Warm-Up: Whether its 5 minutes or 30, a good dynamic warm-up can work wonders.  This type of warm-up does more then only increase muscle temperature and blood. It incorporates all of the above with movement.  You actually prep the elements of mobility as you prepare for the workout or competition.

Mobility Matters

Most athletes need to work on maintaining or improving their mobility.  The strains and stresses of playing a sport add up.  Repetitive motion puts uneven stress on your body and it adapts.

Mobility allows you to move as efficiently as possible.  That means better performance and less risk of injury.  In the end it not a question of mobility vs flexibility, but how you are going to maintain or improve them.  Get it right so you can move your best.

Research Proves How Faster Sprinters Use Strength For Speed

SMU Sprint Research

Research from the world’s leading sport scientists proves that faster sprinters need strength for speed. They are able to apply more force to the ground than slower runners. Studies from institutions including Harvard University and SMU’s Locomotor Performance Laboratory have shown how these forces are the difference between faster and slower sprinters.

They’ve proven that if you want to maximize your speed, you need to apply big forces to the ground quickly. This is one aspect of strength that includes two different types of strength.

The Velocity Speed Formula has 4 main components and two of those are BIG FORCE and SMALL TIME. Now researchers have confirmed that these 2 components of the Speed Formula are a big difference between faster and slower sprinters.

RELATED: Learn Velocity’s Proven BIG 4 Speed Formula

Biomechanics of Sprinting

Sprinting has been studied for decades. However, most of this was done using video to analyze how sprinters moved. Using video gives you a picture of the kinematics. This is how we measure and describe motion through body position, joint angles and movement velocity.

This kinematic research has given us a lot of useful information. Still, there is another component to the biomechanics that hasn’t been looked at much, and that’s the kinetics.

These are the forces that are used to create that motion and body position. It’s a lot harder because you need a track full of force plates and moving cameras or a specialized research treadmill. Yet, it’s critical to understand the needs of strength for speed.

Kinetics of Speed – Force

To propel your body forward, and to keep you upright, your leg has to produce a lot of force into the ground on each step. That’s what builds your momentum during acceleration phases and keeps it going during your full speed sprinting.

You create that big force, by first getting your leg up into the right position on each stride. Picture a sprinter with their front thigh up high, about parallel with the ground. Then you use the explosive strength in your glutes, quadriceps and hamstrings to generate power and drive your foot down into the ground.

“The top sprinters have developed a wind-up and delivery mechanism to augment impact forces. Other runners do not do so.” Ken Clark, a researcher in the SMU Locomotor Performance Laboratory

https://blog.smu.edu/research/2017/01/30/new-study-connects-running-motion-to-ground-force-provides-patterns-for-any-runner/

Driving the leg down and back into the ground is going to create a big impact on each step. The peak force during that ground contact is gong to be 4-5 times bodyweight when sprinting. Now imagine a 200lbs athlete, that’s 800-1000 lbs. on a single leg, each step.

Kinetics of Speed – Time

Your linear speed dictates why the big force you generated has to be applied in a small time. The faster you sprint, the faster you need to apply that big force.

Think about it. As you sprint faster, your body is moving over the ground with greater velocity. You’re moving faster over that part of the ground under your foot. The faster you sprint; the less time your foot is in contact with the ground. That’s just simple physics.

When your foot hits the ground, it’s driving down with a lot of power. There’s only 90-130 milliseconds of time to get all that force into the ground.

To realize how fast that is take out your phone. Open the stopwatch. Try to hit “start”, then “stop” as fast as you can.
What did you get?

Most people will get between 00.12 and 00.15. Some may beat that. This should give you some perspective; it is a small time to apply that force of 4-5 times bodyweight.

Strength For Speed and Stiffness

Now let’s combine that big force with the small time. This is the hard part, and where some athletes fail. You need the explosive strength to get the leg attacking down at the ground as hard as possible.

And you need the reactive strength and kinetic chain “stiffness” to not collapse on contact. Only when you have the reactive strength to provide the stiffness can you fully benefits from those big forces of the leg swing. This is a key part of understanding strength for speed.

Your ankle, knee or hip all have to stay “stiff” enough to apply the force of 4-5 times bodyweight and not bend or absorb it. If they cushion it like a shock absorber, some of the force is wasted.

This doesn’t mean stiff as in lack of flexibility. It means that the muscles and tendons in your lower body can hit the ground and deliver all your power without stretching or relaxing.

The Bouncing Ball Analogy

An analogy to help visualize this is to picture 2 bouncing balls. One is a bouncy, superball made of a “stiff” rubber. The other is a beach ball, soft and compliant. Throw them down with as much force as possible. Which one bounces higher off the ground?

The stiffer superball bounces higher. Why? Because it stores elastic energy and applies the force back into the ground. The beach ball absorbs some of the force and doesn’t have the elastic energy to rebound.

That superball is like reactive strength. Your muscles and tendons don’t relax and absorb the force. They store elastic energy and use it to help you go faster.

“We found that the fastest athletes all do the same thing to apply the greater forces needed to attain faster speeds. They cock the knee high before driving the foot into the ground, while maintaining a stiff ankle. These actions elevate ground forces by stopping the lower leg abruptly upon impact.” Peter Weyand, director of the Locomotor Performance Lab

https://blog.smu.edu/research/2017/01/30/new-study-connects-running-motion-to-ground-force-provides-patterns-for-any-runner/

Sprinting Fast Requires Strength

The research on faster sprinters shows why you need strength for speed. And we are not just talking about weight on a barbell.

To generate a big force with your lower leg you will need explosive strength. To apply it you need reactive strength for stiffness. The good news is that research has also shown that getting stronger generally correlates with getting faster.

You can develop these specific strength qualities by working in the weightroom using traditional and Olympic lifts. You do it using plyometrics properly. Especially single leg plyometrics with an emphasis on reactive strength.

You create that stiffness building core and hip stability to transmit and control those forces. And most importantly, you develop it by sprinting with good mechanics.

We know you need strength for speed. The Velocity Speed Formula is built on science and proven in sport. The research is starting to catch up and show why it works and can help you get faster.

TO LEARN MORE: The Ultimate Guide To Speed Training

Selected References

  • Faster top running speeds are achieved with greater ground forces not more rapid leg movements Weyand, et. al , J Appl Physiol 89: 1991–1999, 2000.
  • Are running speeds maximized with simple-spring stance mechanics?Kenneth P. Clark, Peter G. Weyand, Journal of Applied Physiology Published 31 July 2014
  • Relationships Between Ground Reaction Impulse and Sprint Acceleration Performance in Team Sport Athletes, Kawamori, et. al, The Journal of Strength and Conditioning Research 27(3), April 2012
  • Increases in lower-body strength transfer positively to sprint performance: a systematic review with meta-analysis, Seitz, et. al., Sports Med. 2014 Dec;44(12):1693-702
  • New study connects running motion to ground force, provides patterns for any runner. SMU Research Blog, January 30, 2017. https://blog.smu.edu/research/2017/01/30/new-study-connects-running-motion-to-ground-force-provides-patterns-for-any-runner/