Youth Speed Training Tips: Technical + Applied Drills

Tips for training speed in youth athletes
The Velocity Speed Formula (read more about it hereuses proven speed training drills to make athletes faster.  However, it’s much more than just drills.  How different drills are combined affects learning.  For youth speed training to carry over to the game you need to learn this tip in the video.

Velocity Speed Formula

Combining technical and applied drills is an important part of youth speed training.  It’s one way we make sure athletes can apply the speed in the game.  This is just one part of the Velocity Speed System.  It’s built on the science of biomechanics and motor learning.  Learn more about the Velocity Speed Formula

Velocity Speed Training Drills: Optimal Range of Motion

Speed training drills: optimal range of motion
The Velocity Speed Formula (read more about it hereuses proven speed training drills to make athletes faster.  Whether its elite speed training or youth speed training, the Formula always has the same 4 parts;
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

Apply Force in the OPTIMAL RANGE OF MOTION

The range of motion your limbs and joints travel through while sprinting is a Goldilocks scenario; not too big, not too small, but just right.

If the limbs are traveling through too big a range of motion you may be wasting time and energy.

If the range is too small, you wont generate the power you need.

RELATED: Sport Specific Types of Strength

Optimal range of motion is developed by acquiring good motion through stretching and mobility work combined with dynamic mobility drills.  Below we have a few of the speed training drills that help athletes develop the optimal range of motion for sprinting.

Kneeling Arm Action Drill

This drill to reinforce arm action has been around for a long time.  The reason; it still helps athlete work on understanding the arm swing range of motion while running.  One of the keys is that you want athletes using this drill to feel good spinal alignment with relaxed shoulders and neck.

Use this drill through various speeds, push faster until form, coordination or body position start to suffer.  Then back the speed down and regain the form.  Make sure the motion is from the shoulder.  No “karate-chop” actions at the elbows.

 

Fast Leg Drill

There are many useful variations of the Fast Leg speed drill and multiple benefits.  The one we are focusing on here is the range of motion.  Specifically the range of motion when the leg recovers from behind the body and the thigh lifts in front.  The higher the thigh lift, the more power the drive down and back can be.

This drill breaks up the sprinting motion so athletes can focus on the technical aspects.  As always, great core posture is important.

Velocity Speed Formula

Both of these are important speed training drills to help athletes ability to apply force in the proper direction. These drills reinforce basics physics so athletes can accelerate faster.

RELATED: Velocity Coaches Favorite Speed Drills

Velocity Speed Training Drills: Proper Direction

Speed Training Drill for Proper Direction
The Velocity Speed Formula (read more about it hereuses proven speed training drills to make athletes faster.  Whether its elite speed training or youth speed training, the Formula always has the same 4 parts;
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

Apply Force in the Proper Direction

Force is a vector which means it has a direction as well as quantity.  Efficient and effective movement requires not just the right amount of force, but applied in the right direction.

Proper direction is achieved through the right motor pattern (technique) and the stability of the body to apply it that way.  When the structures of joints, muscles and tendons aren’t up to the task, we have what we call “energy leaks.”

Below we share 2 useful drills that help you develop your PROPER DIRECTION qualities.  These drills are designed to reinforce and help the athlete self-regulate the direction they apply force to the ground.

RELATED: Sport Specific Types of Strength

Harness Resisted Sprints for Acceleration

To accelerate an athlete need to apply more force horizontally.  Thats how they increase their movement velocity. This drill reinforces horizontal force application.

The harness allows additional horizontal force to be applied to the athlete. Using a belt, it’s applied near the center of mass to be more biomechanically correct.  As the athlete feels that added force, they will tend to automatically apply force in a more horizontal direction

 

Wall Drills

This is a classic speed training drill that has survived the test of time.

Trying to drive the legs backward and push into the wall reinforces the horizontal force direction for acceleration.

To project your center of mass in the air high enough for the rope to go around twice, you need to apply a big enough force.

It’s very effective but has a problem; it get boring quickly.  So make sure you use it as a prep or reinforcement drill.  Don’t do it for a long time.  It’s also bets used in quick contrast with a drill where the athlete gets to apply that force moving and reinforce the proper direction.

Velocity Speed Formula

Both of these are important speed training drills to help athletes ability to apply force in the proper direction. These drills reinforce basics physics so athletes can accelerate faster.

RELATED: Velocity Coaches Favorite Speed Drills

Velocity Speed Training Drills: Small Time

plyometric drills for speed
The Velocity Speed Formula (read more about it hereuses proven speed training drills to make athletes faster.  Whether its elite speed training or youth speed training, the Formula always has the same 4 parts;
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

Apply Force Faster for Speed

Below we share 2 useful drills that help you develop your SMALL TIME qualities.  In essence, these are plyometric drills.  Drills where you have a ground contact that stretched your muscles, followed quickly by a contraction of those same muscles.

One of the benefits of this type of plyometric action is that parts of your muscles act like springs.  When you land they compress.  When you push they spring back and help you.

This is what we term Reactive Strength and is key for any athlete that wants to be fast.

RELATED: Sport Specific Types of Strength

Hurdle Hop Speed Training Drills

Hurdle hops are a very popular drill for speed training with good reason; they are effective.  The key is to do them well.

When your goal is to develop your reactive abilities, you need to focus on getting off the ground quick.  At the same time, you need to apply force.  Make sure you try to really project your body high into the air on each.  The speed is on the ground contact, not the movement forward.

Jump Rope Double-Unders

This is a time tested classic for foot speed.  It’s hardly new, but it works.  It should be a fundamental piece of every youth speed training program.  It’s basically a plyometric drill for speed.

To project your center of mass in the air high enough for the rope to go around twice, you need to apply a big enough force.

If you don’t want to get smacked with the rope, you need to apply that force quickly.

Double-unders are what we call a “self-limiting drill’.  This means that you really can’t perform it with bad technique.  Maybe you can get a few in without doing it well, but to string them together you need good form.  You will be in the proper body position, have the right range of motion and have a small time on the ground.

Velocity Speed Formula

Both of these are important speed training drills to develop an athletes ability to apply force quickly. They are great plyometric drills that work.   Execute them explosively and with great body position to be effective. If you perform them well and often, you’ll see the results transfer to game speed.

Velocity Speed Training Drills: Big Force

speed training drills
The Velocity Speed Formula (read more about it hereuses proven speed training drills to make athletes faster.  Whether its elite speed training or youth speed training, the Formula always has the same 4 parts;
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

Getting Stronger for Speed

This article is focused on 2 important drills that help to develop your BIG FORCE qualities.  Although these are not weight room drills, strength training for speed development is important.  To be fast, athletes need to train in the weight room and do it properly.

These drills also develop some of the strength qualities you need to improve your speed.  They are very specific to building strength for speed.  They build speed strength and have a high carryover from training to application.

Box Blast Exercise

The Box Blast is a speed training drill that lets you focus on maximum power.  The basic alignment of the limbs and torso is similar to the acceleration phase of sprinting.  Most importantly, the muscle motion is a piston-like action which we observe the acceleration phase.

Heavy Sled Runs

This is another greater drill that is highly specific to strength for speed.  Speed training drills like this need to be executed with great form and body alignment.

Velocity Speed Formula

Both of these are important speed training drills to develop the force production capabilities of athletes.  Execute them explosively and with great body position to be effective. If you perform them well and often, you’ll the results transfer to game speed.

Velocity Speed Formula: Big Force

Strength training for speed
Velocity Big 4 Speed Formula
The Speed Formula is the science of speed biomechanics simplified.

Understanding strength training for speed is important for coaches and athletes.  Previously I’ve covered why the Big 4 is such an effective “formula” for speed (read it here). It’s how we analyze movement, teach and come up with drills and programs. No advanced degree in physics or neuroscience necessary. The formula is:

  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion
Let’s delve deeper and take a look at the first element; Big Force. It has driven why and how we incorporate certain drills and resistance exercises. It is basic Newtonian physics; you push the ground one way and it pushes you the opposite direction.

How Much Strength Do You Need?

It’s a good question. How much strength do you really need?
 
Observing the difference in muscular development between a sprinter and a marathoner should give you a clue. Sprinter’s have way more muscle mass. This doesn’t mean you need to just be bigger or become a powerlifter. But biomechanics research does tell us very large forces have to be applied by the athlete to move fast.
 
You need to produce a Big Force. The strength you need is developed by:
  • sprinting fast,
  • using specific sprint and plyometric drills,
  • and getting in the weight room.

What Is Strength?

For an athlete, strength means a lot more than just how much weight you can lift. There are 6 different strength qualities we train. Focusing on specific strength qualities is how we improve speed.
 
Strength is how much you can lift, right?
 
Nope.
 
How much you can lift is a great expression of some strength or power qualities. As an Olympic weightlifting coach, I’ve helped athletes go from starting the sport to be on the US National team. I love the strength and power (Strength x Speed) expressed through weightlifting.
 
Then there’s powerlifting. Squat, deadlift, bench. Many of the coaches on our staff have been competitive powerlifters as well as my friends. These feats of strength are really impressive and it’s a great expression of Max Strength.
 
Neither is the definition of strength though. They are just great examples of 2 of our 6 specific qualities. Going in-depth is beyond the scope of this writing but here are our 6 types of strength:
  1. Maximum Strength: think powerlifting and even sub max weights. It’s about force and speed is not important.
  2. Eccentric Strength: Think shock absorbers and brakes. When you land, stop, cut, etc… your muscles contract while lengthening. This is an eccentric strength action.
  3. Power (Strength-Speed): Moving fast against a larger load. Think weightlifting or football lineman pushing each other.
  4. Power (Speed- Strength): Moving fast against a light load. Throwing a baseball, jumping, throwing a punch. Moving it fast matters.
  5. Rate of Force Development: How fast you can turn on the muscles. Think of a drag racer analogy. It’s how fast they can go from 0 to speed that matters.
  6. Reactive Strength: Combine a fast & short eccentric stretch, immediately followed by RFD and you have reactive. This is the springy quick step you see in fast footwork.

What Type of Strength Do You Need?

If there are different types of strength, which help you apply a BIG FORCE into the ground? Which will help you get faster?
 
The answer lies in part on what you are trying to improve. The answer may be different if we are talking about acceleration compared to maximum velocity sprinting. And those may be different than a change of direction.

Acceleration

This is the phase where you are starting and gaining speed. During this phase, the mechanics lead to slightly longer ground contact times. This added time in contact with the ground lets you build up force to push harder. You still have only between 200 – 400 milliseconds, so Max Strength will help, but Speed-Strength is key.
 
This phase is also characterized by large horizontal and vertical forces. This means that when training strength, you need strength exercises for both pushing backward and down. A good dose of weight room basics like lunges, power cleans help. Combined with vertical and horizontal plyometrics, along with sled work, the results get better.

Maximum Velocity Mechanics

During this phase, you are upright and moving fast. Your foot needs to hit the ground with high forces but it’s not there for long. Elite sprinters are in contact less than 100 milliseconds. You need Max Strength enough to handle the high loads 1.5 – 2.5 times body weight on each leg. You also need to be able to absorb the impact and reapply force quickly. That’s Reactive Strength.
 
Since you’ve already accelerated, in this phase the forces are mostly vertical. They keep you from falling into the ground. Therefore, weight and plyometric exercises like squats, reactive hurdle jumps, and even jump rope double-unders all contribute.

Change of Direction

When changing direction, the type of strength can depend on how sharp of a cut you make. One situation is a major change of direction where you slow down and re-accelerate. This requires a lot of Eccentric Strength and Strength-Speed. On the other hand, if it’s a quick cut without slowing down or a big range of motion, then it’s more about Reactive Strength and Speed-Strength.
 
Both these are going to benefit from a mix of weight room and plyometrics. The weight room will include strength exercises and Olympic lifts for power. The plyometrics are going to need to focus on developing horizontal and lateral forces.

Technical Sprint Drills for Strength Development

There is a big misunderstanding of technical speed drills. Most people see a technical drill and naturally believe it’s to develop technique. It makes sense after all, but there is so much more.
 
Many “technique” drills in speed training are just as important to developing Big Force as the weight room. By refining an athlete’s technique, they become more efficient with the strength they have. They learn to apply it better.
 
Often many speed drills are really a plyometric exercise themselves. They require putting a lot of force into the ground, in the proper direction. They are in fact the most speed specific form of strength training there is.

Strength Training for Speed

Having good technique and good power output is key to being fast. It’s not an either/or situation, it’s an AND sitution. You need technique AND strength. In every athlete’s development, they go through stages. Sometimes their technique gets ahead of their strength, and vice versa. Make sure you stay on track by developing both and working with a knowledgeable coach who can determine if you need one or the other more.

TRAINING: 3 drills to help you stop on a dime

Better Agility: Stop on a dime

Almost every sport is about more than just running fast or a huge vertical. Pick one, and we’ll bet that most of the action happens around changing direction. For the majority of the athletes with whom we work at Velocity around the country, this means they have to be just as good at stopping as they are at starting. Without good brakes, they simply can’t control their speed.

RELATED: Do Athletes Need A Bigger Engine or Better Brakes?

Three of our coaches have chosen their favorite drill to help their athletes have strong, fast brakes so that they can stop on a dime.

Level Lowering Ladder

One of the most basic skills an athlete needs to change direction is the ability to maintain proper position during deceleration. One of the tools we like to use at Velocity is the agility ladder because it helps focus the athlete on foot position and accuracy in addition to whatever skills we choose to address that day.

To do these drills, athletes first need to have the coordination to perform basic ladder drills well, such as swizzle, scissor switches, and the icky shuffle. Once the athlete can perform each of these without difficulty, they can modify the drill and pause as they drop their center of mass, stopping themselves in the proper position. The most basic, and therefore most important, positions in sports are the square, staggered, and single leg stance. A mini-band can be placed around the athlete’s knees to create awareness of proper knee position.  If the athlete adds a medicine ball into the drill, they can work on more ballistic/dynamic eccentric movement with a different stimulus.

The athlete needs to lower his/her center of mass to create “triple flexion” in lower extremity joints: hip, knee, and ankle. The center of mass, knee, and ground contact must be in a good alignment to keep the movement safe and efficient.

Most importantly, the athlete must achieve proper hip hinge and dorsiflexion of the ankle. The vast majority of non-contact injuries occur during deceleration, often at knees or ankles. Learning how to absorb (load) force with proper body position (hip hinge, stable knee, and dorsiflexed ankle) will help prevent these injuries.

Springs and Shocks Ladder

The agility ladder is a great tool to help our athletes develop their shocks and springs.

When it comes to speed, athletes need to be springy and quick off the ground. When we talk about “springs,” we mean our athletes’ ability to be faster by using the elastic properties of their muscles.

“Shocks” means having the ability to absorb impact and force so our athletes can stop safely and quickly. This drill emphasizes both abilities and applies to any sport.

How to do the drill:

through the ladder try to be a quick as you can off of the ground. This is where we focus on our springs. When we land we want to land and be under control. The more control we have when decelerating the safer our body will be when changing direction. Most important part of the landing is keeping the body in proper position and not allowing a valgus knee.

Important details to watch are: position and control. We want an athlete to be able to develop the strength and control through the proper range of motion. This is especially important as we begin to add not speed or distance. Do not let athletes progress unless they can properly and effectively let control their landing for at least 2 seconds.

Resisted Deceleration March Series

Slowing down is often the most challenging aspect of changing direction and requires the athlete to absorb more force than at any other phase of the movement. This series of drills teaches athletes to keep good posture and body-alignment during deceleration. When we add a concentric movement (explosiveness) immediately followed by a deceleration phase the drill also develops reactive strength and power in the athlete.

How to do the drills:

  1. Position the athlete in a good athletic base with a resistance band or bungee cord around their waist. The partner holding the band increases resistance by pulling toward the direction where deceleration needs to occur.
  2. The athlete controls their posture while moving toward “the direction of pull”. Their shin is a very important detail and must point away from the direction of pull. This helps their foot dig into the ground and resist the momentum that is trying to keep them moving in their original direction.
  3. The ground contact, knee, and athlete’s center of mass should be in alignment and proper posture maintained.
  4. If you want to incorporate an explosive moment, have the athlete perform any form of change-of-direction movement, such as a lateral push, crossover step, or jump.

Important details to watch are:

  1. Make sure the athlete understand the basic athletic base position. Hip-hinge and dorsiflexion of the ankles are very important.
  2. The level resistance needs to be appropriate to their strength and ability. You may adjust this by using a different size resistance band or the distance between the athlete and partner.
  3. Ground contact, shin angle, knee position, and the athlete’s center of mass stay aligned (away from the direction of pull).
  4. Make sure the athlete is not leaning on the band.
  5. Eccentric control first, then concentric! Make sure your athletes understand how to use the brakes before they hit the gas pedal.

Be safe! Bulletproof your shoulders for baseball

bulletproof your shoulder from injury

Its springtime and that means it’s time for Baseball and Softball. Players and coaches know that maintaining shoulder health is important for these sports, but they don’t always know what to do about it. Use these simple exercises to bulletproof your shoulders and stay in the game.

RELATED: Discover the Secret Elite Sports Organizations Know About Building Champion Athletes.

In this video, Coach Kenny Kallen shares two exercises that help improve posture and increase mobility in the thoracic spine and latissimus dorsi. Using these exercises in your warm-up will increase functionality, stability, strength, and power in the shoulders. The ultimate result will be better-throwing mechanics and less pain.

Next, Coach Ken Vick explains why shoulder stability is so important for baseball players. He demonstrates the Band Y, T, and W exercises to be used in any warm-up or workout routine. Improve your baseball throwing mechanics by stabilizing your scapula and rotator cuff to control your follow-through. Improvements in this area translate into increased speed, functionality, stability, strength, and power in the shoulders.

Sports Medicine Specialist Wes Rosner shows you how the 1/2 Turkish Get-Up can help bulletproof your shoulder.  It can strengthen and stabilize the shoulders, back, and core to help prevent injury. You want all these strong and stable when it’s game time.

RELATED: Strength Training Is Injury Prevention

Understanding the Functional Anatomy of the Shoulder Complex and How it Relates to Your Performance

Athletes shoulder pain
The shoulder isn’t just a simple joint. In fact, the shoulder is a complex of multiple joints and muscle groups. It is incredibly mobile and allows you to generate force to throw a baseball or spike a volleyball.

To maximize your performance and reduce the risk of injury, it’s imperative that you understand how the shoulder complex functions.

The Shoulder is Designed for Motion

To better understand the function of the shoulder complex, picture a golf ball sitting on a tee. This is the glenohumeral (GH) joint’s function by design—a full range of motion through many planes but little structural stability.

The rotator cuff muscles are responsible for providing stability (keeping the golf ball on the tee) to the gleno-humeral joint.

Stabilizing the joint is easy when your arm is immobilized. However, it requires a lot more work when you’re throwing a ball or swinging a bat.

Furthermore, the mobility and stability of the shoulder joint relies on muscle function. It will be compromised if there is a weakness or imbalance in the rotator cuff muscles.

Microtrauma Can Lead to Rotator Cuff Injuries

The rotator cuff consists of four muscles that pull the humeral head (ball) into the glenoid (socket) during arm movement.

When these rotator cuff muscles aren’t doing their job well, there is extra stress on the glenohumeral joint.

The repetitive microtrauma that accumulates over weeks, months and even years can lead to injury. This is common with baseball and volleyball players and even CrossFitters. The pain starts slowly and builds up over time.  

It’s not just overuse that causes microtrauma to the shoulder. A common problem is that athletes continue to perform after they are fatigued. This means they are exceeding their ability to control motion through the shoulder complex. This is why youth baseball leagues and even Major League teams use pitch counts.

Whether throwing, hitting or pressing overhead, doing so when you’ve lost the ability to control the kinetic chain can lead to injury.

RELATED:  Check out some shoulder strengthening moves in 7 TRX Strength Moves for Your Upper Body

Function is Key

Shoulder treatments will help reduce pain and swelling when dealing with an injury. Unfortunately, this is where many athletes fail at rehabilitation. They “chase the pain,” treating only the area that’s hurt. It’s a quick fix to relieve the pain, but it fails to address the source of the problem.
Instead, you’re more likely to eliminate the risk of re-injuring your shoulder if you focus on improving the function of the entire kinetic chain. This requires a greater understanding of biomechanics, physiology and motor control.
 
Yes rehab should eliminate your pain. Still, it also should focus on targeting areas of the body that you may not think directly correlate to the shoulder. That’s how you fix it over the long run.