Is Lifting Overhead Safe? It Depends.

No gym, now is a good time to workout doors

As a physical therapist specializing in sports rehabilitation, I often encounter questions and concerns regarding the safety and effectiveness of overhead shoulder exercises.

Today, I want to address these concerns and shed light on the importance of incorporating these exercises into your fitness routine. So let’s dive in!

The Power of Overhead Shoulder Exercises

Overhead lifting exercises, such as shoulder presses, pull-ups, and barbell snatches, have gained popularity among fitness enthusiasts and athletes alike. And for good reason!

They are fantastic for building muscle and strength in your shoulders, contributing to overall athletic performance.

Think about it – whether you’re reaching for something on a high shelf, loading your gear onto a roof rack, or hanging a picture frame, these daily activities often mimic the motion of an overhead press.

By incorporating overhead shoulder exercises, you can enhance your functional movement patterns and perform these activities with ease.

And its part of our design. Human shoulder complexes are designed to be able to function in a really big range of motion. That includes overhead.

Understanding the “It Depends” Factor

Now, let’s address the elephant in the room: the notion that overhead exercises are inherently bad or should be avoided. They are not.

However, there’s more to it.

Whether overhead exercises are suitable for you depends on a variety of factors. I want to emphasize that I am not advocating for blindly performing these exercises despite pain or shoulder issues.

Therefore, to answer this question, we need to take a more pragmatic approach and consider the bigger picture.

Mobility Matters

First and foremost, you must have adequate overhead mobility. Can you fully raise your arm overhead without arching your back, shrugging, or experiencing any discomfort?

If not, it’s crucial to address any mobility limitations before attempting overhead exercises.

This lack of mobility may stem from various areas, including the shoulder joint, the scapula-thoracic joint, or the thoracic spine. While many people focus on the shoulder itself, often the scapular muscles and lats are bigger culprits.

Additionally, muscular imbalances can also contribute to limited overhead mobility.

Remember, if you can’t lift your arm overhead comfortably, it’s best to work on improving your mobility before diving into overhead presses.

Stability is Key

scapular control is essential for overhead lifting

Another critical factor is shoulder and spine stability. To handle the demands of overhead lifting, you need adequate stability in your shoulder girdle.

This stability is achieved through a strong foundation created by your upper back, scapular muscles, rotator cuff, and even your trunk and core.

Muscular imbalances and stability deficits are common issues that can impact the shoulder girdle, so it’s important to address these through appropriate exercises and training techniques.

Remember, the heavier the weight you lift, the more stability your shoulder girdle requires.

Mastering Load Management

In the pursuit of optimal shoulder health and performance, many enthusiasts overlook the importance of load management.

  • Intensity (weight)
  • volume (sets and repetitions)
  • frequency (how often)

Even with excellent mobility and stability, improper load management can lead to soreness and shoulder discomfort over time.

It’s crucial to find the right balance and avoid overwhelming your body’s capacity to recover. Remember, depending on your goals, you may not need to lift maximal loads to get the benefits.

Just like pitchers monitor their pitch counts to prevent overuse injuries, you must understand that pushing too hard or too frequently can hinder your long-term fitness and performance goals.

The Art of Exercise Modification and Scaling

When it comes to maintaining shoulder health in the long run, understanding exercise modification, regression, and scaling is paramount.

Understand, there is no one-size-fits-all approach.

Each individual may have unique limitations or restrictions that require adjustments. Fortunately, any functional movement pattern can be modified or scaled to achieve the same goal of building strength and improving fitness.

For example, if a barbell overhead press feels uncomfortable, consider using dumbbells or kettlebells instead to allow more freedom of movement. Additionally, the use of a landmine setup can be an excellent alternative when a full overhead position is not possible.

The key is to find overhead lifting variations or positions that work for you while minimizing stress on the shoulders.

Whether you’re dealing with mobility restrictions, recovering from an injury, or experiencing shoulder discomfort, modifying and scaling exercises can help you achieve success while reducing excessive tissue stress.

To ensure effective modifications, regressions, or scaling, it’s advisable to seek guidance from a knowledgeable healthcare professional or fitness expert who can tailor exercises to your specific needs.

Embracing a Mindset of Control

In conclusion, let’s revisit our initial question: Are overhead lifting exercises safe? The answer is a resounding yes.

However, we must acknowledge that individual circumstances and factors come into play. It’s essential to take ownership of our bodies and understand that the exercises themselves are not to blame.

Instead, poor mobility, stability, and training habits are the culprits behind potential issues. By addressing these areas and seeking professional guidance, you can take control of your body’s capabilities and unleash your full potential.

Remember, if you’re new to exercising or currently dealing with an injury, it’s always wise to consult a qualified healthcare provider who can offer personalized advice based on your unique situation.

So, embrace the benefits of overhead shoulder exercises, focus on improving mobility and stability, manage your training load wisely, and don’t hesitate to modify or scale exercises when needed.

With the right approach, you’ll be on your way to achieving optimal shoulder health, enhancing your athletic performance, and enjoying the benefits of a well-rounded fitness routine.

Curved Running In Sports

Curved Running In Sports

If you aren’t training curvilinear sprinting, you’re missing an important part of game speed.

When you look around, you’ll start to notice there is a lot of curved running in sports. Most of us think of speed as straight-ahead running. We think of agility and see the changes in direction and footwork.

But since it falls somewhere in the middle, curved running gets ignored in most training programs.

Curved running is not turning or changing direction. It’s when an athlete is altering their body lean and mechanics to run on a curvilinear path. It is reasonable to ask if this is important in sports. When we break down the video, do we see curved running in sports?

Curved Runs in Sports

In any track sprint over 100m the athletes are going to have to run the curve. After all, that’s just the shape of the track.

Yet, curvilinear runs occur in a lot of team and court sports as well. The reason is simple, there are often opponents blocking their direct pathway.

A curved path becomes the fastest option. You can maintain or build speed running the curve while working to edge out your opponent and gain a lead.

If you want to see some great curved runs take a look at lacrosse. Because there is a large amount of field behind the goal players use all 360 degrees. This leads to many curved runs attacking the goal.

In many sports we see athletes trying to get around the corner or around the edge set by defenders. Think of a defensive end in football trying to rush the quarterback. Or the running back trying to both get outside around defenders while gaining some positive yards.

You see the same thing in basketball and soccer with offensive players trying to get around a defender to drive on the goal or basket.

Accelerating or Maintaining Speed

In liner sprinting we look at acceleration and upright, maximum velocity mechanics differently. The postures, rhythm, movement pattern, and power requirements are different.

Trying to accelerate around a defender and get to the basket requires curvilinear sprinting.
A baseball player displays upright, cyclical sprinting mechanics.

When we consider curved runs in sports we need to recognize that they occur in both acceleration and max velocity.

The NFL defensive end is starting from complete rest when they start that curved run. An NBA player driving the basket is similar. These are instances where the players are accelerating on a curved pathway

On the other hand, a wide receiver taking the ball on a sweep, or a baseball player rounding the bases are using more cyclical, upright mechanics. Just like linear sprinting, as you get to higher velocities, you have to become more upright.

Bottom line; curved running in sports is common for attacking players. These runs also have differences compared to linear sprinting.

Biomechanics

While its common in sports, its not actually well researched. In part because its just harder when the athlete is moving on a curved line.

However, we do have some information that highlights the different demands during curved running.

One of the most obvious is that the athlete leans their body. The tighter the curve, the greater the lean. This leads to obvious changes in running mechanics.

The body lean means the athlete has to manage and overcome centrifugal forces. They must apply mediolateral forces through the lower body much more than in linear sprinting.

With the athlete’s body leaning, the ankles make contact with the ground in either eversion (angled out) or inversion (angled in). Applying the large forces in sprinting at these angles creates new demands. Athletes need increased mobility and stability in the foot and ankle.

Since the trajectory of the run is curved, and the body leaning, the outside leg of the player must “crossover” the midline of the body to strike the ground. Crossing over requires both increased hip mobility as well as stability and power in different muscles.

While there is limited science, the early research on curved sprinting shows that the body is loaded differently. Training and specific preparation for those forces and ranges of motion just makes sense.

How To Prepare The Body

One of the things to prepare athletes is to make sure they have the requisite range of motion needed. The hips need an appropriate range in internal/external rotation and hip adduction.

This can be developed through various mobility methods. Check out this drill for hip mobility.

The foot and ankle also require a different range of motion and increased stability.

Like linear sprinting, curved runs in sports require generating and transmitting large forces into the ground. Developing the right strength and power qualities in the weight room will contribute to better curved running.

An easy modification to consider is leg strength with some type of lateral movement. This helps prepare for the added medio-lateral forces in the lower body.

Players should also include lateral hops and plyometrics. These will both build power and prepare the foot and ankle structures.

Sprint Training For Curved Runs in Sports

Most athletes have limited training time. Often they can barely spend time on linear sprinting. So how do they fit in something else?

In most cases, small doses added to the existing speed training can work. After all, there are more similarities with linear sprinting than differences.

If an athlete doesn’t have good mechanics in linear sprinting they probably won’t be good in curved runs. At Velocity, we’ve found that developing the basics first in linear sprinting is an effective strategy.

Crossover Running

The crossover and lean are what make curved running possible and create different demands. That’s why we use crossover running to develop curvilinear sprinting speed.

Cross over running covers a continuum from single crossover steps to running laterally for multiple steps.

What we’ve found over the past 20 years and one million plus athletes, is that training the crossover improves curved running.

The trajectory in crossover running is more extreme than a curved run. However, the combination of linear and cross over drills prepare the athletes for effective curved running.

We top this off with small doses of curved running as applied drill in speed sessions. Doing this allows athletes to explore how to effectively apply these mechanics.

These applied drills are fit into both acceleration and max velocity training sessions.

Curved Running When Returning From Injury

When you consider the increased centrifugal forces in curved running, you recognize the extra demands on the body. The athlete encounters demands on their mobility, stability, and strength in the lower extremity.

If a player who makes curved runs is rehabbing from a lower-body injury, they better put some focus on it.

Unfortunately, we find it rarely happens. Curvilinear running should be trained before returning to sport. The player’s body should be specifically prepared for an effective and safe return to sport.

Curved Running In Sports Can Be Improved

Curved runs are critical in many sports situations. Being faster on the curve can give a player an advantage. That makes it something players want to be faster at.

The most important way to improve curvilinear sprinting is to get good at linear sprinting. Most of the mechanics, forces and physical demands are very similar.

Preparing the body through targeted mobility, stability, strength, and power development is the next step. It’s the physical foundation needed. Including crossover running drills and a small dose of curved runs tops off the training.

Improved curvilinear speed allows athletes to be ready come game time.

Olympic Lifting for Youth Athletes: Providing the Ultimate Performance Advantage

Olympic Lifting for youth athletes

Olympic Lifting for Youth Athletes: Providing the Ultimate Performance Advantage

By Coach Tim Hanway CSCS. Sports Performance Director – Norwood
 
Every four years without exception, the world is treated to the Summer Olympic Games. The world’s best athletes assemble and compete for national honor, prestige and glory.
 
It’s Usain Bolt shattering preconceived notions of speed. Simon Biles combining all elements of strength, power, poise and grace in what can only be described as gymnastics masterclass. The level of athleticism at the Olympic Games is truly inspiring.
 
From a sports performance standpoint, coaches like myself view the Olympic Games through a different lens. Specifically, those displays of incredible athleticism stimulate our appetites and thirst for knowledge.
 

Olympic lifts are a common denominator

As coaches, we look at the performances of world-class athletes and ask ourselves; how can we reverse engineer the training process? What allowed these athletes to hit such peak form? How can we also improve own athletes’ performances?
 
I have found that there is a common denominator when looking at the training systems of all athletes. That is, the successful integration of Olympic Lifting into the athlete’s respective training programsOver the years, I have spoke with countless coaches and athletes alike. Reviewed training logs of professional, collegiate and other national level athletes. The Olympic lifts are almost always there.
 
To be successful in the highest level of any sport, athletes need to reach their maximal levels of strength, power and speedOlympic lifting for youth athletes is one strategy to achieve this.
 

Olympic Lifting For Young Athletes; Is It Good?

The beauty of Olympic lifts is that they are hands-down the single-best method for developing the many aspects of strength, power, speed and total-body athleticism.
 
However, Olympic lifts have a highly technical in nature. Sometimes they get a bad reputation from athletes, parents and even strength and conditioning coaches. They can have a perceived difficulty and/or danger.
 
 
However, when Olympic lifting is one of the safest, most versatile and effective methods of training sport-specific athleticism. When they are taught and executed properly.
 
Like so many elements of training, it can be misunderstood. Which is why the purpose of this article is to shed light on Olympic lifting.
 
For young athletes there are many benefits. Incorporating them into your training program can help you achieve newfound levels of performance and enhanced athleticism. So we are providing a general overview of these lifts.
 

The Snatch and Clean & Jerk

The Olympic lifts are broken down into two main categories. These two categories are called the “Snatch” and the “Clean & Jerk”.
 
power ouptut of olympic lifts
As portrayed in the following diagrams, the Snatch and the Clean & Jerk lifts are very similar in that in both instances, the movement ends when the bar is
successfully lifted over the athlete’s head.
 
Sports science research shows both have very large power outputs.  Much larger than classic compound strength exercises.
 

The Snatch

The Snatch, according to world renowned Performance Coach, Clive Brewer, is the “most powerful, whole-body human movement possible in sport”. It requires a tremendous explosive effort to move that bar from ground to overhead in one movement.
 
Technical breakdown of snatch olympic lift
Figure 1: Demonstration of the Various phases of the “Snatch”
 

The Clean & Jerk

The Clean & Jerk on the other hand, is a two-part exercise where the Snatch ends when the bar is successfully lifted over the athlete’s head. Although nearly identical, the position of the bar and segmented nature of the Clean & Jerk allows athletes to lift even heavier weights than when performing the Snatch.
 
However, because of the heavier weight and greater distance of bar travel, the speed of execution for the Clean & Jerk is slower.
Technical breakdown of the clean & jerk olympic lift
Figure 2: Demonstration of the Various phases of the “Clean & Jerk”
 
 
 
With that, the emphasis of power in training (i.e. speed vs. force) becomes the key element in executing the two lifts and more specifically, successfully training the body when performing the Clean & Jerk.
 

Big Force, Small-Time: The Basis of Athletic Power

 
Drilling a soccer ball 50yds from midfield. Soaring through the air to dunk a basketball. Making bone-shattering hits as an offensive lineman. Each of these illustrates the concept of power application.
 
However, as alluded to above when discussing the difference between the Snatch & Clean and the Jerk, each of the above three scenarios illustrates different types of power. To understand the difference between the three, we must first discuss what power exactly is:
 
In its simplest terms, power can be described in the following mathematical equation:
 
Power = Force x Velocity
 
“Force” in this equation can be broken down into equaling the product of Mass x Acceleration. Producing force is the application of “strength”.
 
“Velocity” on the other hand, can be described as equaling the distance an object travels divided by the time it takes to get there (Velocity = Distance/time). This is commonly called “speed”.
 
Jumping, sprinting, cutting and exploding from a three-point stance are all examples of sporting skills that each require a high degree of force generation, in the shortest time possible (Force x Velocity).
 
Hence, the mantra ‘Big Force, Small Time’ perfectly captures the essence of optimal sports performance training. Most sports movements require an optimal combination of force and velocity. to be successfully executed at the highest level.
 
 

The force-velocity curve

Either Force or Velocity can be emphasized in the above equation to maximize power output. Depending upon the task at hand, you might want one more than the other.

 
This concept is best illustrated in the following image, which depicts what is commonly known as Sports Science circles as the “Force-Velocity Curve”.
 
the force velocity curve
Figure 3: Illustration of the ‘Force Velocity Curve’
In the diagram you can see the inverse relationship between maximal force and maximal velocity. In a nutshell, the laws of physics state that when resistance or force levels go up, speed of movement goes down and vice-versa.
 
Let me illustrate this concept into force and velocity components. I often ask my athletes; “Which would you rather: Be hit by a cement truck going 10 mph or be hit by a bullet going 1,700 mph?” The look I typically get in return tells me that neither option is considered ideal.
 
In each instance, both the cement truck and fired bullet are considered extremely powerful from a physics standpoint. In the truck scenario, what makes the truck so powerful is the sheer weight and force of the truck of question. What it lacks in speed, it more than makes up for in mass.  Getting hit by a truck is very unpleasant!
 
The bullet on the other-hand, is tiny. The mass of such a small object is practically inconsequential on its own, but when traveling at such incredible speeds, represents a powerful and equally dangerous scenario.
 
In conclusion, when it comes to developing athletic performance, not all power situations are created equal. This is part of the reason Olympic lifting for youth athletes is a great way to train power.
 

The Best Athletes “Surf the Curve” In Their Training:

 
I learned the phrase “surf the curve” was one when reading an interview by Nick Grantham and Neil Parsley. They are both highly acclaimed Strength and Conditioning Coaches from the United Kingdom.
 
velocity based strength training
Velocity Sports Performance applies strength training across different parts of the force – velocity curve to optimize athletic performance.

Nick and Neil expressed that for a majority of athletes, in order to achieve optimal power training, there are times in their respective training plans where they have to train more like a “truck”, less like a “bullet” and vice-versa.

 
The reason for this is that for so many sports, both elements of power (i.e. Force and Velocity/Speed emphasis) are present when describing the skills and abilities necessary to attain peak performance.
 
Take our football player as an example: the football player making a tackle represents a skill with a high force component. Whereas, that same player exploding off the line of scrimmage to beat his man and chase the opposing quarterback, represents a skill with a high velocity component. Therefore, both elements of power (i.e. big force and big velocity) are necessary to compete at the highest level as a football lineman.
 
Strength and Conditioning Coaches describe this point of emphasis when it comes to training power as either a “Strength – Speed” or “Speed – Strength” emphasis. 
For example, let’s look at two different strength types in the same basic movement pattern. A bench press executed with explosiveness, could be considered a “Strength-Speed” exercise. Whereas a light, fast medicine ball chest throw could be considered an example of a “Speed-Strength” exercise (greater speed or velocity emphasis).
 

Olympic Lifts: Giving Athletes the Best of Both Worlds

 
Now that power has been clearly defined, and the relationship between force and velocity clearly understood, one can start to fully appreciate the ‘complete package’ of Olympic lifts.
 

Olympic lifts aren’t the only way to increase power

Let’s be clear, medicine balls, plyometrics, and speed work are also essential to overall athletic success. Anyone that has sat through my podcast of maximal speed training has heard how much I value focused, precise and biomechanically sound speed work.
 
The truth is that each of the above three classifications of exercises represent focused training strategies that are scientifically proven to maximize peak power output, especially from a speed-strength standpoint.
 
Conversely, I also love the regular incorporation of heavy, key compound lifts, including overhead and horizontal pressing movements like the military press and bench press, upper-body pulling movements and classic lower-body strength exercises.
 
What each of these broad categorizations of lifting movements have in common, is the high degrees of coordinated, muscular-strength efforts necessary to complete each of these lifts successfully.
 
However, Olympic lifts provide athletes with the best of both worlds.  To illustrate, in revisiting both the Snatch & Clean and the Jerk, one can appreciate the degrees of power necessary to navigate the bar overhead from a stationary floor position.
 
What is not captured in the static images for either the Snatch & Clean and the Jerk however, is the requisite strength, explosive power, precision, and total-body coordination necessary to successfully navigate such impressive weights from the ground to an overhead position.
 
It is only through such highly precise, coordinated muscular efforts where high levels of athletic power can be achieved to successfully attempt either of the two types of Olympic lifts.
 

Olympic lifts provide one type of sports specificity 

Arguably, from a ‘sports specificity’ standpoint, the Olympic lifts successfully capture the rapid triple-extension qualities of the ankles, knees and hips so often encountered in sports (see below images):
running
 
arm care program for baseball and softball players
 
building young athletes female goalie
 
elite training
Each Demonstrations of the rapid ‘Triple-Extension’ of the hips, ankles and knees as they relate to sport
 
Virtually all sporting actions require a forceful triple-extension of the hip, knee and ankle. Whether sprinting, cutting, making a tackle, or attempting to jump for a serve, triple-extension is there.
 
Plyometrics, speed work and heavy compound lifts, are tools that represent invaluable components of my own coaching ‘arsenal’. Utilizing a combination of these tools throughout a training plan can lead to substantial gains in performance. There is no question that even in the absence of Olympic lifting, athletes can still achieve increases in athletic power.
 

Training efficiently

Athletes and coaches have limited time and effort to spend in the weight room. The question I usually ask myself as a coach when creating a program is; what types of lifts and activities are going to give my athletes the most ‘bang for their buck’. What will give them the greatest return from their training investment in the weight room?
 
The answer is Olympic lifts. Programming olympic lifting for youth athletes combines high levels of strength, speed, power and total-body coordination. 
 
Let’s return to the key distinction between the two lifts as well as our ‘Force-Velocity’ Curve.  By nature the Snatch is considered by many coaches to be more of a ‘Speed-Strength’ exercise. Whereas the Clean & Jerk is considered more of a ‘Strength-Speed’ exercise. This due to a combination of factors which includes the bar speeds and degrees of resistance encountered in both lifts.
 
Overall, both versions of the Olympic lifts in a training program allows athletes to effectively ‘surf the curve’ in their training. These lifts rely on the successful application of high force and high speeds. It is impossible to attempt either the Snatch or Clean & Jerk slowly.
 
Unlike plyometrics or medicine ball work, Olympics lifts can have a very wide range of resistanceInstead of relying on either body weight or small, weighted implements, Olympic lifts us adjustable barbells and weight. A coach can adjust the plates in order to achieve optimal resistance levels.
 

Summary:

There are numerous benefits that strength and power training has on sports performance. Speed training, plyometrics and classic strength training exercises can all provide athletes with exceptional gains in performance and athleticism.
 
Olympic lifting for youth athletes provides athletes with the ultimate “X-Factor” when it comes to training.
 
These lifts closely mimic the force and velocity demands of sport. As a result, they allow athletes to make monumental both strength and power gains in the weight room. They are efficient. One exercise gives multiple strength benefits.
 
Still the argument persists that these movements too technical for some athletes.  The truth is that once mastered, Olympic lifts provide young athletes what’s needed.  An array of exercises and drills that transfer to on-field performance.
 
Youth athletes that can learn Olympic lifts at a young age benefit from a superior training stimulus. Their successful incorporation also adds the confidence to execute one of the most common lifting skills in the sports world.

Velocity Speed Training Drills: Proper Direction

Speed Training Drill for Proper Direction
The Velocity Speed Formula (read more about it hereuses proven speed training drills to make athletes faster.  Whether its elite speed training or youth speed training, the Formula always has the same 4 parts;
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

Apply Force in the Proper Direction

Force is a vector which means it has a direction as well as quantity.  Efficient and effective movement requires not just the right amount of force, but applied in the right direction.

Proper direction is achieved through the right motor pattern (technique) and the stability of the body to apply it that way.  When the structures of joints, muscles and tendons aren’t up to the task, we have what we call “energy leaks.”

Below we share 2 useful drills that help you develop your PROPER DIRECTION qualities.  These drills are designed to reinforce and help the athlete self-regulate the direction they apply force to the ground.

RELATED: Sport Specific Types of Strength

Harness Resisted Sprints for Acceleration

To accelerate an athlete need to apply more force horizontally.  Thats how they increase their movement velocity. This drill reinforces horizontal force application.

The harness allows additional horizontal force to be applied to the athlete. Using a belt, it’s applied near the center of mass to be more biomechanically correct.  As the athlete feels that added force, they will tend to automatically apply force in a more horizontal direction

 

Wall Drills

This is a classic speed training drill that has survived the test of time.

Trying to drive the legs backward and push into the wall reinforces the horizontal force direction for acceleration.

To project your center of mass in the air high enough for the rope to go around twice, you need to apply a big enough force.

It’s very effective but has a problem; it get boring quickly.  So make sure you use it as a prep or reinforcement drill.  Don’t do it for a long time.  It’s also bets used in quick contrast with a drill where the athlete gets to apply that force moving and reinforce the proper direction.

Velocity Speed Formula

Both of these are important speed training drills to help athletes ability to apply force in the proper direction. These drills reinforce basics physics so athletes can accelerate faster.

RELATED: Velocity Coaches Favorite Speed Drills

Velocity Speed Training Drills: Small Time

plyometric drills for speed
The Velocity Speed Formula (read more about it hereuses proven speed training drills to make athletes faster.  Whether its elite speed training or youth speed training, the Formula always has the same 4 parts;
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

Apply Force Faster for Speed

Below we share 2 useful drills that help you develop your SMALL TIME qualities.  In essence, these are plyometric drills.  Drills where you have a ground contact that stretched your muscles, followed quickly by a contraction of those same muscles.

One of the benefits of this type of plyometric action is that parts of your muscles act like springs.  When you land they compress.  When you push they spring back and help you.

This is what we term Reactive Strength and is key for any athlete that wants to be fast.

RELATED: Sport Specific Types of Strength

Hurdle Hop Speed Training Drills

Hurdle hops are a very popular drill for speed training with good reason; they are effective.  The key is to do them well.

When your goal is to develop your reactive abilities, you need to focus on getting off the ground quick.  At the same time, you need to apply force.  Make sure you try to really project your body high into the air on each.  The speed is on the ground contact, not the movement forward.

Jump Rope Double-Unders

This is a time tested classic for foot speed.  It’s hardly new, but it works.  It should be a fundamental piece of every youth speed training program.  It’s basically a plyometric drill for speed.

To project your center of mass in the air high enough for the rope to go around twice, you need to apply a big enough force.

If you don’t want to get smacked with the rope, you need to apply that force quickly.

Double-unders are what we call a “self-limiting drill’.  This means that you really can’t perform it with bad technique.  Maybe you can get a few in without doing it well, but to string them together you need good form.  You will be in the proper body position, have the right range of motion and have a small time on the ground.

Velocity Speed Formula

Both of these are important speed training drills to develop an athletes ability to apply force quickly. They are great plyometric drills that work.   Execute them explosively and with great body position to be effective. If you perform them well and often, you’ll see the results transfer to game speed.

Velocity Speed Formula: Big Force

Strength training for speed

Velocity Big 4 Speed Formula
The Speed Formula is the science of speed biomechanics simplified.

Understanding strength training for speed is important for coaches and athletes.  Previously I’ve covered why the Big 4 is such an effective “formula” for speed (read it here). It’s how we analyze movement, teach and come up with drills and programs. No advanced degree in physics or neuroscience necessary. The formula is:

  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion
Let’s delve deeper and take a look at the first element; Big Force. It has driven why and how we incorporate certain drills and resistance exercises. It is basic Newtonian physics; you push the ground one way and it pushes you the opposite direction.

How Much Strength Do You Need?

It’s a good question. How much strength do you really need?
 
Observing the difference in muscular development between a sprinter and a marathoner should give you a clue. Sprinter’s have way more muscle mass. This doesn’t mean you need to just be bigger or become a powerlifter. But biomechanics research does tell us very large forces have to be applied by the athlete to move fast.
 
You need to produce a Big Force. The strength you need is developed by:
  • sprinting fast,
  • using specific sprint and plyometric drills,
  • and getting in the weight room.

What Is Strength?

For an athlete, strength means a lot more than just how much weight you can lift. There are 6 different strength qualities we train. Focusing on specific strength qualities is how we improve speed.
 
Strength is how much you can lift, right?
 
Nope.
 
How much you can lift is a great expression of some strength or power qualities. As an Olympic weightlifting coach, I’ve helped athletes go from starting the sport to be on the US National team. I love the strength and power (Strength x Speed) expressed through weightlifting.
 
Then there’s powerlifting. Squat, deadlift, bench. Many of the coaches on our staff have been competitive powerlifters as well as my friends. These feats of strength are really impressive and it’s a great expression of Max Strength.
 
Neither is the definition of strength though. They are just great examples of 2 of our 6 specific qualities. Going in-depth is beyond the scope of this writing but here are our 6 types of strength:
  1. Maximum Strength: think powerlifting and even sub max weights. It’s about force and speed is not important.
  2. Eccentric Strength: Think shock absorbers and brakes. When you land, stop, cut, etc… your muscles contract while lengthening. This is an eccentric strength action.
  3. Power (Strength-Speed): Moving fast against a larger load. Think weightlifting or football lineman pushing each other.
  4. Power (Speed- Strength): Moving fast against a light load. Throwing a baseball, jumping, throwing a punch. Moving it fast matters.
  5. Rate of Force Development: How fast you can turn on the muscles. Think of a drag racer analogy. It’s how fast they can go from 0 to speed that matters.
  6. Reactive Strength: Combine a fast & short eccentric stretch, immediately followed by RFD and you have reactive. This is the springy quick step you see in fast footwork.

What Type of Strength Do You Need?

If there are different types of strength, which help you apply a BIG FORCE into the ground? Which will help you get faster?
 
The answer lies in part on what you are trying to improve. The answer may be different if we are talking about acceleration compared to maximum velocity sprinting. And those may be different than a change of direction.

Acceleration

This is the phase where you are starting and gaining speed. During this phase, the mechanics lead to slightly longer ground contact times. This added time in contact with the ground lets you build up force to push harder. You still have only between 200 – 400 milliseconds, so Max Strength will help, but Speed-Strength is key.
 
This phase is also characterized by large horizontal and vertical forces. This means that when training strength, you need strength exercises for both pushing backward and down. A good dose of weight room basics like lunges, power cleans help. Combined with vertical and horizontal plyometrics, along with sled work, the results get better.

Maximum Velocity Mechanics

During this phase, you are upright and moving fast. Your foot needs to hit the ground with high forces but it’s not there for long. Elite sprinters are in contact less than 100 milliseconds. You need Max Strength enough to handle the high loads 1.5 – 2.5 times body weight on each leg. You also need to be able to absorb the impact and reapply force quickly. That’s Reactive Strength.
 
Since you’ve already accelerated, in this phase the forces are mostly vertical. They keep you from falling into the ground. Therefore, weight and plyometric exercises like squats, reactive hurdle jumps, and even jump rope double-unders all contribute.

Change of Direction

When changing direction, the type of strength can depend on how sharp of a cut you make. One situation is a major change of direction where you slow down and re-accelerate. This requires a lot of Eccentric Strength and Strength-Speed. On the other hand, if it’s a quick cut without slowing down or a big range of motion, then it’s more about Reactive Strength and Speed-Strength.
 
Both these are going to benefit from a mix of weight room and plyometrics. The weight room will include strength exercises and Olympic lifts for power. The plyometrics are going to need to focus on developing horizontal and lateral forces.

Technical Sprint Drills for Strength Development

There is a big misunderstanding of technical speed drills. Most people see a technical drill and naturally believe it’s to develop technique. It makes sense after all, but there is so much more.
 
Many “technique” drills in speed training are just as important to developing Big Force as the weight room. By refining an athlete’s technique, they become more efficient with the strength they have. They learn to apply it better.
 
Often many speed drills are really a plyometric exercise themselves. They require putting a lot of force into the ground, in the proper direction. They are in fact the most speed specific form of strength training there is.

Strength Training for Speed

Having good technique and good power output is key to being fast. It’s not an either/or situation, it’s an AND sitution. You need technique AND strength. In every athlete’s development, they go through stages. Sometimes their technique gets ahead of their strength, and vice versa. Make sure you stay on track by developing both and working with a knowledgeable coach who can determine if you need one or the other more.

Strength Training Is Injury Prevention

strength training helps prevent injury

Stay In The Game

In elite sports there is a lot of emphasis put on injury prevention.  It doesn’t matter how good you are if you are sitting on the bench, hurt.

Teams and athletes look to us to reduce their risk of injury.  We know there are many parts to injury prevention, but the foundation is often strength.

For the last 20 years, Velocity Sports Performance has known that good strength training is injury prevention.

  • Our experience with athletes in 11 Olympic Games backs it up.
  • Our experience with thousands of professional athletes backs it up.
  • A growing body of scientific research is starting to catch up.

is Youth strength training safe

RELATED:  Is Youth Strength Training Safe?

 

You need to know: strength is more than just weight on a barbell

Types of Strength
When you speak about strength or being strong, what do you imagine? An athlete hoisting a barbell loaded with heavy weight in a Squat or Bench Press? How about an Olympic weightlifter explosively moving 400 pounds from the floor to over his head in a single movement?
 
These types of things are often considered “strong,” but what about other sporting actions? How about sprinting at full speed, jumping high, or throwing and kicking?  Most people become unsure whether or how strength is part of these movements.

Defining Strength

What is strength in general and specifically for athletes?  Strength is all about physics, and we are talking about Newton’s 2nd Law of Motion: in a nutshell, Force is equal to Mass multiplied by Acceleration.
 
Strength is a way of talking about the application of force. An athlete can apply force to the ground, to an opponent, to a ball or other piece of sports equipment, or even internally to his or her own body.

Mass & Magnitude

The mass in this equation is what’s being moved. As an athlete that could be things like:
  • a ball or stick in your hands, to
  • your own body weight (jumping, sprinting and cutting)
  • a 300-pound linemen
  • 500 pounds on a barbell

Acceleration and Time

One thing most people recognize is that in sports, doing things quicker is usually an advantage. Athletes don’t have unlimited time to apply force.
 
Acceleration is how fast something increases its speed. The faster the acceleration, and thus the speed, the shorter the time.
 
In sprinting or agility, your foot is in contact with the ground for a limited time. In jumping, there is limited time, and doing it faster than your opponent can be key.  When throwing or kicking a ball or swinging a racket, bat or stick, you want it moving as fast as possible.
 
Speed of movement matters.

Muscle Action

In physics, force is what we call a “vector.” This means it has a magnitude (how much?) and a direction (which way?). Direction matters because forces can be applied in different directions for different effects.
 
One thing to consider about direction is whether the muscle is lengthening or shortening during the contraction. When it’s contracting and getting shorter (e.g., bringing the bar up in a Bicep Curl), it’s called a “concentric” action.
 
If you’re applying force while the muscle lengthens (e.g., while slowly lowering the bar in the 2nd half of the Bicep Curl), it’s called an “eccentric” action.
 
Types of muscle contractions:
  • CONCENTRIC = Shortening
  • ECCENTRIC = Lengthening
Eccentric and concentric strength are not the same. The same muscles may be used, the same structures and contractile proteins, and the same lints moved. Yet, the brain uses different motor control strategies. For the same action concentrically or eccentrically the motor control is different.

Physiology & Motor Control

Another important thing to understand about strength for athletes is where it comes from.  Often people equate strength with bigger muscles. This is for good reason, because they are related, although not perfectly and not for all types.
 
Generating force with your body is a combination of the structure of your muscles (size and biological content) and your neuromuscular control. The muscle is your engine to develop horsepower, but your brain is the driver that decides how hard you push the pedal.

Sport-Specific Strength

When we analyze an athlete in his or her sport, we observe various forms of movement. Speed, agility, jumping, throwing, kicking, hitting, twisting, landing and so on are movement caused by how an athlete generates force.
 
It follows that all types of athletic movement are based on how you generate and apply strength.
 
Still, how can everything be about strength? Is what your muscles do squatting a full barbell different from what they do when you throw a baseball that only weighs ounces?
 
The answer to understanding strength is actually composed of different combinations of Newton’s 2nd Law. Force = Mass multiplied by Acceleration

Playing with the Equation

In different movements we manipulate the 3 parts of the equation—Force, Mass and Acceleration (Speed & Time). The we consider the direction of contraction (eccentric or concentric). Now we have a way to analyze sports movements and strength types.
 
We use this movement-based approach to simplify complex biomechanics into 6 specific types of strength.

6 Types of Strength

Max Strength

This is the basic capability of the muscle to produce a forceful contraction. In application it also involves coordinating multiple muscle groups across multiple joints. The amount of force that can be generated regardless of the time it takes to develop and apply it is called max strength. This is what we call this type of strength even when he or she is under sub-maximal loads.
Maximum strength
Using a car analogy, imagine a big industrial dump truck. It may not move fast, but it can move big loads.

Eccentric Strength

As mentioned before, motor control is different if the action is concentric or eccentric. The capacity to develop high levels of eccentric force is key in sports. Actions such as landing from a jump, stopping, changing direction, winding up to throw a ball and swinging a bat are all eccentric in nature.
When we come to cars, think brakes.  Eccentric strength is like having great brakes on a car to handle those high speeds. An F1 racer has to have great brakes so he or she can go into turns as fast as possible before braking.

Strength-Speed Power

Most sports applications of force involves doing it quickly. Faster is usually better. This is where power comes in. Power is equal to the velocity times the force. Increasing either force or the speed its applied will lead to more power.
strength speed
When an athlete applies force rapidly to a larger load (e.g., blocking another lineman or pushing a bobsled), it’s what we term Strength-Speed Power. “Strength” is first in the name because it’s the bigger component in generating the power. This is like a NASCAR racer who can apply a lot of torque (force), moving the car even at high speeds.

Speed-Strength Power

Here it’s the “speed” of movement (or short time of force application) that is the larger factor in generating the power. Think of an athlete swinging a bat, throwing a ball, or applying force to the ground during high velocity sprinting.
The racing analogy is more akin to motorcycle racing—still applying force at high speeds (like NASCAR), but against much lighter loads.

Rate of Force Development

This is the drag racer. In a drag race, the goal is to go from 0 mph to full speed in as little time as possible. This is the same quality that creates quickness in an athlete. Rapid movement of the limbs, a quick release of the ball throwing or a shot in hockey, fast feet for soccer. Being able to rapidly generate force, regardless of whether the force level is high is known as Rate of Force Development.
Rate of Force Development
A drag racer coming off the line and getting up to speed as fast as possible is a good car analogy.

Reactive Strength

This one’s a combo. It’s a fast eccentric action coupled with a high RFD force. Think of rapid footwork, or a quick step to change direction and juke an opponent. Or the second quick jump when a basketball player comes down and goes back up quickly to get a rebound.
We use a motocross bike as the analogy. Because it has high Rate of Force Development with eccentric-type landings of bumps that gives it that “springy” quality.

Developing Strength that’s Functional

At the end of the day, athletes want the type of strength that will help them perform at the highest level and gives them the resilience to stay healthy.
 
Every athlete needs a base across all six types of strength. While it seems to make sense to go straight to the specific type of strength for your sport, it’s not the best strategy.
 
 
Doing that actually limits development and long-term potential. During early stages of strength training, a broad base of strength is important. Even at the elite levels of sport, athletes mix strength types during different parts of the year.
 
As you progress in your development and level of competition, you begin to focus on the specific qualities. Focusing on the strength types more important to your sport, your position, and even your individual genetics and style of play.
 
Strength is much more than how much you can lift on the barbell.

TRAINING: 3 drills to help you stop on a dime

Better Agility: Stop on a dime

Almost every sport is about more than just running fast or a huge vertical. Pick one, and we’ll bet that most of the action happens around changing direction. For the majority of the athletes with whom we work at Velocity around the country, this means they have to be just as good at stopping as they are at starting. Without good brakes, they simply can’t control their speed.

RELATED: Do Athletes Need A Bigger Engine or Better Brakes?

Three of our coaches have chosen their favorite drill to help their athletes have strong, fast brakes so that they can stop on a dime.

Level Lowering Ladder

One of the most basic skills an athlete needs to change direction is the ability to maintain proper position during deceleration. One of the tools we like to use at Velocity is the agility ladder because it helps focus the athlete on foot position and accuracy in addition to whatever skills we choose to address that day.

To do these drills, athletes first need to have the coordination to perform basic ladder drills well, such as swizzle, scissor switches, and the icky shuffle. Once the athlete can perform each of these without difficulty, they can modify the drill and pause as they drop their center of mass, stopping themselves in the proper position. The most basic, and therefore most important, positions in sports are the square, staggered, and single leg stance. A mini-band can be placed around the athlete’s knees to create awareness of proper knee position.  If the athlete adds a medicine ball into the drill, they can work on more ballistic/dynamic eccentric movement with a different stimulus.

The athlete needs to lower his/her center of mass to create “triple flexion” in lower extremity joints: hip, knee, and ankle. The center of mass, knee, and ground contact must be in a good alignment to keep the movement safe and efficient.

Most importantly, the athlete must achieve proper hip hinge and dorsiflexion of the ankle. The vast majority of non-contact injuries occur during deceleration, often at knees or ankles. Learning how to absorb (load) force with proper body position (hip hinge, stable knee, and dorsiflexed ankle) will help prevent these injuries.

Springs and Shocks Ladder

The agility ladder is a great tool to help our athletes develop their shocks and springs.

When it comes to speed, athletes need to be springy and quick off the ground. When we talk about “springs,” we mean our athletes’ ability to be faster by using the elastic properties of their muscles.

“Shocks” means having the ability to absorb impact and force so our athletes can stop safely and quickly. This drill emphasizes both abilities and applies to any sport.

How to do the drill:

through the ladder try to be a quick as you can off of the ground. This is where we focus on our springs. When we land we want to land and be under control. The more control we have when decelerating the safer our body will be when changing direction. Most important part of the landing is keeping the body in proper position and not allowing a valgus knee.

Important details to watch are: position and control. We want an athlete to be able to develop the strength and control through the proper range of motion. This is especially important as we begin to add not speed or distance. Do not let athletes progress unless they can properly and effectively let control their landing for at least 2 seconds.

Resisted Deceleration March Series

Slowing down is often the most challenging aspect of changing direction and requires the athlete to absorb more force than at any other phase of the movement. This series of drills teaches athletes to keep good posture and body-alignment during deceleration. When we add a concentric movement (explosiveness) immediately followed by a deceleration phase the drill also develops reactive strength and power in the athlete.

How to do the drills:

  1. Position the athlete in a good athletic base with a resistance band or bungee cord around their waist. The partner holding the band increases resistance by pulling toward the direction where deceleration needs to occur.
  2. The athlete controls their posture while moving toward “the direction of pull”. Their shin is a very important detail and must point away from the direction of pull. This helps their foot dig into the ground and resist the momentum that is trying to keep them moving in their original direction.
  3. The ground contact, knee, and athlete’s center of mass should be in alignment and proper posture maintained.
  4. If you want to incorporate an explosive moment, have the athlete perform any form of change-of-direction movement, such as a lateral push, crossover step, or jump.

Important details to watch are:

  1. Make sure the athlete understand the basic athletic base position. Hip-hinge and dorsiflexion of the ankles are very important.
  2. The level resistance needs to be appropriate to their strength and ability. You may adjust this by using a different size resistance band or the distance between the athlete and partner.
  3. Ground contact, shin angle, knee position, and the athlete’s center of mass stay aligned (away from the direction of pull).
  4. Make sure the athlete is not leaning on the band.
  5. Eccentric control first, then concentric! Make sure your athletes understand how to use the brakes before they hit the gas pedal.