The Crossover Step Myth: “Don’t Cross Your Feet”

Is a crossover step bad in sports

Whether it is, basketball, football, or soccer you can easily find coaches extolling the dangers of using a crossover step.  “You’ll get beat if you cross your feet” is still a common mantra for many coaches.

However, when we watch many of the best defenders in these sports, we see them cross the feet often.

So are they just doing it wrong?  Or maybe they are just gifted athletes the rest of us mere mortals shouldn’t try to copy?

We would argue that they have developed the athletic movement skills to use their feet, legs, and hips effectively.  They developed a wide enough range of motor programs that they can cross their feet, rotate hips, and reposition efficiently to move well.

The Crossover Step

A crossover step is used when an athlete wants to move a bit faster or cover longer distances, approximately 4 yards or more. If you are doing a crossover to the left, you lift your right leg and cross it in front of your body. Your right foot will land in front of your left foot. (To see this, view the videos below.)

This is the way that the body naturally wants to move because it allows better force production and vector than a shuffle. 

If you watch athletes, you’ll notice that players will do this movement without instructing them.

Defenders and Hips

The concept coaches are trying to teach when they say “don’t cross your legs” may be that they want the defender to stay “squared up” to the opponent.  They want the defenders’ hips facing the opponent so they can go left or right easily at any moment.  

This makes sense.

If a defender turns their hips early, the attacking player can exploit this by changing direction.  With the hips turned one way, the defender is going to be slower because they have to turn their hips 180 degrees to get after the opponent.

So in a sport like basketball, the defender may want to be able to shuffle their feet to move left or right and cut off the attacking player. 

By shuffling, they stay squared up and can quickly react to either the left or right.

Speed and Distance

Let’s imagine we line up two players with the same speed for a race of 5 yards.  However, we let one sprint straight ahead and the other side shuffle.  Who is going to win?

The sprinter.  Running straight ahead is more biomechanically effective than shuffling.  There is a speed limit on the shuffle.

Now, what if we let the second athlete do a crossover run for those 5 yards?  Not a full turn and run, but staying hips square to the other, but letting their legs cross the midline of the body.  

In equal athletes, it is now going to stay really close.

So the crossover run can be effective. When a higher speed or distance is covered and the defender needs to stay square in case the opponent stops or changes direction.

Let’s take this further and make them go about 15 yards.  

The athlete using the crossover run may stay even initially. But they will start to fall behind as the other athlete keeps increasing speed.  Spriting straight ahead is just faster because of better biomechanics.

So at farther distances and higher speeds, the defenders need to turn their hips and run otherwise they will be beaten.

Situational Needs

What those examples highlight is that the “best” way to move depends on the goal.

  • Stay alongside the opponent
  • Keep hips square and ready to change
  • Move at different speeds
  • Cover short, medium, and long distances

That is why we want athletes to develop all of these movement skills.

It’s also why we want them to develop the coordination to effective change between them including opening the hips or crossing the feet.  

They need both linking skills so they can react instantaneously.

When a sport requires athletes to react to changing opponents, ball movement, and tactics it is considered an “open” sport.  The decisions and patterns are open to change.

Any defender in these sports has to possess a variety of ways to cover ground, change direction, and do these things while watching the game in other directions and dodging obstacles.

In the video linked below, watch as Kobe Bryant (recognized as a very good NBA defender) uses shuffles, crossovers, and slides to manage varying speeds and distances.

Training Crossed Feet

In our movement methodology, we develop several movement skills that help an athlete effectively cross their legs.  We teach them to do this to both move and transition between movements.

A variety of carioca drills are used to form a base of coordination with the legs crossing the midline of the body, both in front and in back of the torso and the other leg.

While these are seemingly remedial drills, they are very effective at helping an athlete get comfortable both turning the hips and crossing legs.  While the carioca isn’t a movement pattern they will use in transit during their sport, they give lots of repetition to develop proficiency.

The crossover drills are used both as the crossover run for transit and the crossover step to transition between movements. Crossover drills are combined with lateral or linear movements. The movements include: sprints, shuffles, and backpedals.

Finally, it is critical to use open, applied drills where athletes have to react to opponents, stimuli, or commands to change between speeds and directions.  They have to learn how to combine these hip, leg, and foot positions efficiently.

Building Athletes That Can Cross Their Feet

While the goal of not crossing the feet and staying square often makes sense, the reality of reacting in open sports means the best athletes learn to do it well.  

Instead of trying to coach athletes to stop using these natural movements, we work to make them more efficient and have a bigger skillset.  We want them to become proficient in using a variety of movements and transitions and reacting instantaneously to their opponents.

Training effective crossovers are key in building better athletes in many sports.

Is Your Agility Important for Soccer?

Soccer Agility

Is Your Agility Important for Soccer?

Sprinting speed is very important, but soccer isn’t a track meet. It’s not a linear game, and elite soccer players have great agility in addition to blazing straight-ahead speed.
 
We divide agility into two key components—quickness and change of direction. Sprinting speed is great, but if you can’t change direction, you’re going to get burned.

Velocity Speed Formula

The Velocity Speed Formula doesn’t apply only to linear sprinting. It also applies to multi-directional movements. The motor control may be different, but Newton’s Laws of Motion still apply, no matter what direction you are traveling.  The Velocity Speed Formula has 4 components;
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

RELATED: The Velocity BIG 4 Speed Formula

There are differences in how we apply the Formula with agility compared to sprinting. When we compare BIG FORCE, the magnitude may be different, as might the type of muscle contractions.
 
For agility, SMALL TIME and PROPER DIRECTION usually become more important. When it comes to OPTIMAL RANGE OF MOTION, it’s usually smaller in agility than in sprinting.
 
Same scientifically based formula, different types and values going into it.

Quickness

You know the feeling you get watching elite players with incredible quickness? Their movements are crisp, precise and lightning fast. They are able to keep their bodies in total control while making moves.
 
Lightning-fast movements made in 1 or 2 steps can make all the difference when reacting to an opponent, or leaving one on the ground.
 
When we consider Quickness, the emphasis moves away from BIG FORCE and changes to SMALL TIME, PROPER DIRECTION and OPTIMAL RANGE OF MOTION.
 
Body control and balance are big parts of true athletic quickness. Without them, you are like a fish out of water, flailing ineffectively. Athletic quickness requires that you have the balance to keep your body in control. That you can apply ground reactions forces effectively to move you in the PROPER DIRECTION.
 
This becomes even more evident in soccer, where many of your moves are made with a ball at your feet. You must have excellent single-leg balance, stability and quickness. This let you forces to your body for movement and still maintain good touch on the ball.
 
When it comes to quickness and your footwork, smaller, not bigger movements, are usually the OPTIMAL RANGE OF MOTION. That’s because you need your feet close to the ground to react and make movements quicker.
 
The ground reaction force is smaller, but quicker and more reactive. When most people think about strength, they imagine how much someone can lift on a barbell. However, that is only one type of strength.
 
The Velocity Sports Performance methodology uses six strength types to make athletes more effective in the game. To improve quickness we are more focused on developing Rate of Force Development and Reactive Strength.

Rate of Force Development

This type of strength is all about how fast you can turn on your muscles and generate force. In biomechanics, it’s called Rate of Force Development (RFD).

Player A may be stronger when squatting with a barbell; but since Player B can turn his muscles on quicker, he’ll start moving faster than Player A. As shown above, when it comes to quickness, it’s not how much force you can produce, but how quickly you can produce it.

Reactive Strength

If an athlete is already moving one way, he or she has to apply force to re-direct his or her momentum. This is Newton’s First Law of Motion. Paraphrased, an object will keep going in the same direction unless acted on by another force. Exercising agility and quickness, an athlete must apply this other force.
During quick agility movements, the foot’s contact with the ground first requires an eccentric muscle action. Eccentric actions occur when the muscle is exerting force one way to resist the athlete’s momentum.
 
This rapid eccentric force to change momentum is immediately followed by a high RFD to redirect the athlete. Rapid eccentric force coupled with a high RFD in a small time are what we biomechanically call Reactive Strength.

What You Need

Here are some examples of how you might improve your quickness.
 
Reactive Strength and RFD
  • Single-Leg Hop Back
  • Ladder Drills – Backward Single-Leg
Body Control and Dynamic Balance
  • Hexagon Agility
  • Single-Leg Med Ball

Change of Direction

Soccer isn’t linear; it constantly changes from one part of the field to another. You have to mark a player who is going one direction, then another. As a soccer player, you need to be good at both.
 
If the angle of the change is less than 90 degrees, it’s an obtuse (quick) cut. If it’s more than 90 degrees, it’s an acute (sharp) cut. You want to think about this, because the SPEED formula is a little different for each. As a soccer player, you need to be good at both.
 
Both types of change of direction are common in soccer. They are among the most demanding actions for your muscles and for your energy systems. They also can make or break key moments. If you can’t shake a defender when attacking, or can’t stay glued to the attacker when defending, you lose.

Quick Cut

The quick cut usually happens at speed. You’re dribbling down the field and want to make a small change to throw the defender off balance or get to an open space. Or, you may be defending a tracking a player as he or she moves across the field. He or she is trying to lose you, and you need to make small cuts to stay with them.

Sharp Cut

Sharp cuts also happen. You’re defending a player with the ball racing in one direction. He or she makes a quick stop, pulls the ball back and goes the other way.  You’d better make a fast sharp cut to stay with him or her.

The Formula for Change of Direction

The Speed Formula is different for BIG FORCE and SMALL TIME in cutting movements. The quick cut is just that—quick, meaning the time on the ground is smaller and the angle change (and therefore the amount of force applied) is smaller.
 
This requires Reactive Strength. In the sharp cut, you have to absorb a lot more momentum to stop going one way, then reapply large force to re-accelerate in a new direction. This requires a combination of Eccentric Strength and Speed-Strength.
 
The Formula is also different in the OPTIMAL RANGE OF MOTION. The sharp cut has to absorb more momentum eccentrically. This means the knees and hips will bend more and/or you will take more steps, whereas the quick cut should only see a little bend at the knees and hips.

Improving Change of Direction

Change of Direction is about the physics of momentum. For best results, you need to understand how to apply the Speed Formula properly. Here are some examples of exercises you can use;
Strength Needed for Agility
Eccentric Strength
  • Kettlebell Swings
  • Single-Leg Hurdle Hops and Stick
  • Ladder Lowering
Effective Mechanics
  • Activate Base Drills
  • Inside Box Drill
  • Wall Crossover Drills
  • Carioca Quickstep

Soccer Agility Makes You A Better Player

True soccer game speed means linear speed and agility. Whether it’s the quickness exhibited with fast footwork and dynamic moves, or rapid changes of direction, you can’t be lacking. These are skills that can be trained through better movement mechanics and by improving the right physical qualities. Take control of your game speed and improve to succeed.

Do athletes need a bigger engine or better brakes?

When it comes to training for performance, many, if not most, people immediately begin thinking about being faster and more powerful. After all, victory often depends on getting to the ball, finish line, goal line, end zone, or basket before your opponent.

RELATED: Learn Velocity’s Proven BIG 4 Speed Formula

This is the same as buying a new car with only one concern: How big is the engine? How fast can it go? How quickly does it get to 60mph? This is, of course, very important to athletic performance.

So, if we stick with our car metaphor, what’s going to happen if you buy a brand new Ferrari but the breaks don’t work? It won’t matter how fast you can go, because, without breaks, you can’t control all that speed.

In fact, the majority of non-contact injuries happen in just this way: athletes can’t manage stopping because they don’t have strong enough brakes and something, well, breaks.

So which one should you pick? The answer is that it depends. If you’re an explosive athlete who can’t change direction quickly, then you probably need better breaks. If your top speed blows away your competition but it takes you too long to get there, then maybe you need a more powerful engine. The first step is to assess where you are now and where you need to be.

RELATED: Why Athletic Strength Is More Than How Much Weight You Can Lift On A Barbell?

At Velocity, we use a battery of tests to see where our athletes are strong and where they need to improve. Based on this and other information, like injury history and goals, our coaches can make smart decisions about what our athletes need in order to improve their performance.

If you want to see how your brakes and engine are working, contact us and schedule testing!

TRAINING: 3 drills to help you stop on a dime

Better Agility: Stop on a dime

Almost every sport is about more than just running fast or a huge vertical. Pick one, and we’ll bet that most of the action happens around changing direction. For the majority of the athletes with whom we work at Velocity around the country, this means they have to be just as good at stopping as they are at starting. Without good brakes, they simply can’t control their speed.

RELATED: Do Athletes Need A Bigger Engine or Better Brakes?

Three of our coaches have chosen their favorite drill to help their athletes have strong, fast brakes so that they can stop on a dime.

Level Lowering Ladder

One of the most basic skills an athlete needs to change direction is the ability to maintain proper position during deceleration. One of the tools we like to use at Velocity is the agility ladder because it helps focus the athlete on foot position and accuracy in addition to whatever skills we choose to address that day.

To do these drills, athletes first need to have the coordination to perform basic ladder drills well, such as swizzle, scissor switches, and the icky shuffle. Once the athlete can perform each of these without difficulty, they can modify the drill and pause as they drop their center of mass, stopping themselves in the proper position. The most basic, and therefore most important, positions in sports are the square, staggered, and single leg stance. A mini-band can be placed around the athlete’s knees to create awareness of proper knee position.  If the athlete adds a medicine ball into the drill, they can work on more ballistic/dynamic eccentric movement with a different stimulus.

The athlete needs to lower his/her center of mass to create “triple flexion” in lower extremity joints: hip, knee, and ankle. The center of mass, knee, and ground contact must be in a good alignment to keep the movement safe and efficient.

Most importantly, the athlete must achieve proper hip hinge and dorsiflexion of the ankle. The vast majority of non-contact injuries occur during deceleration, often at knees or ankles. Learning how to absorb (load) force with proper body position (hip hinge, stable knee, and dorsiflexed ankle) will help prevent these injuries.

Springs and Shocks Ladder

The agility ladder is a great tool to help our athletes develop their shocks and springs.

When it comes to speed, athletes need to be springy and quick off the ground. When we talk about “springs,” we mean our athletes’ ability to be faster by using the elastic properties of their muscles.

“Shocks” means having the ability to absorb impact and force so our athletes can stop safely and quickly. This drill emphasizes both abilities and applies to any sport.

How to do the drill:

through the ladder try to be a quick as you can off of the ground. This is where we focus on our springs. When we land we want to land and be under control. The more control we have when decelerating the safer our body will be when changing direction. Most important part of the landing is keeping the body in proper position and not allowing a valgus knee.

Important details to watch are: position and control. We want an athlete to be able to develop the strength and control through the proper range of motion. This is especially important as we begin to add not speed or distance. Do not let athletes progress unless they can properly and effectively let control their landing for at least 2 seconds.

Resisted Deceleration March Series

Slowing down is often the most challenging aspect of changing direction and requires the athlete to absorb more force than at any other phase of the movement. This series of drills teaches athletes to keep good posture and body-alignment during deceleration. When we add a concentric movement (explosiveness) immediately followed by a deceleration phase the drill also develops reactive strength and power in the athlete.

How to do the drills:

  1. Position the athlete in a good athletic base with a resistance band or bungee cord around their waist. The partner holding the band increases resistance by pulling toward the direction where deceleration needs to occur.
  2. The athlete controls their posture while moving toward “the direction of pull”. Their shin is a very important detail and must point away from the direction of pull. This helps their foot dig into the ground and resist the momentum that is trying to keep them moving in their original direction.
  3. The ground contact, knee, and athlete’s center of mass should be in alignment and proper posture maintained.
  4. If you want to incorporate an explosive moment, have the athlete perform any form of change-of-direction movement, such as a lateral push, crossover step, or jump.

Important details to watch are:

  1. Make sure the athlete understand the basic athletic base position. Hip-hinge and dorsiflexion of the ankles are very important.
  2. The level resistance needs to be appropriate to their strength and ability. You may adjust this by using a different size resistance band or the distance between the athlete and partner.
  3. Ground contact, shin angle, knee position, and the athlete’s center of mass stay aligned (away from the direction of pull).
  4. Make sure the athlete is not leaning on the band.
  5. Eccentric control first, then concentric! Make sure your athletes understand how to use the brakes before they hit the gas pedal.

Becoming More Agile: Teach, Train, Apply

agility
When athletes walk into Velocity, they expect us to improve their physical performance. Their goals are often to get faster cutting, be a better defender, or have a better change of direction. All of these are often considered agility.
While their goals may differ, the solution is almost always the same; make their movements more efficient and their bodies stronger and more explosive.

What is Agility?

Before we can help our athletes improve, we need to measure their performance, but first we need to understand exactly what we are measuring. If we want to quantify a movement quality like agility, we need to understand exactly what we mean when we say “agile.”
Let’s consider two possible definitions:
“The athletic ability to either create an elusive motion or a defensive REACTION with an emphasis on speed and CREATIVITY.” – Carl Valle
“Rapid whole-body movement with change of velocity or direction in RESPONSE TO STIMULUS” –  Science for Sport
The most common test for agility is the 5-10-5 Pro Agility Test. This test involves an athlete sprinting five yards to his left (or right), then 10 yards in the opposite direction, and finally five yards back the other direction. While this test does capture an athlete’s ability to change direction quickly, it captures nothing of an athlete’s ability to be creative or react to an uncontrolled stimulus.
In most cases, performance tests are conducted in a controlled environment for the sake of validity and so that they can be reliably reproduced. Consequently, they cannot truly measure an athlete’s creativity or reaction skills. If we accept that these abilities are essential components of agility, then we know the results of these tests will never give a complete picture of agility.

How do you train agility?

Ladders, cones, and resistance bungees are commonly used in training drills. They are used to develop athletes’ footwork, coordination, and change-of-direction skills.
If you’ve ever seen an athlete showing off their abilities with these drills, you might assume that they are extremely agile, but that’s not necessarily the case. If agility includes the ability to quickly respond to a stimulus, then we should realize that those rehearsed drills improve this skill.
They can help develop quicker and more accurate feet, but every time an athlete practices that drill they are practicing it the same way. It’s like learning the alphabet: a child learns it in the same order every time and it is easily memorized.  But no matter how quickly that child can repeat the alphabet, it doesn’t tell anyone about their ability to spell or form sentences.
Real agility is like the ability to quickly form concise, beautiful, grammatically correct and advanced sentences.  The “words” are the different movement skills an athlete has in his toolbox.  The “sentence” is the combination of how he puts those skills together. An athlete who has mastered agility is like a poet with his, or her, body on the field. It is no wonder that the best demonstrations of athletic ability are often called beautiful.
But no matter how quickly a child can repeat the alphabet, it doesn’t tell anyone about their ability to spell or form sentences.
Drills are still great tools for teaching movement. They can add variations and improve movement quality. However, if we stop there, we have only added to our athletes’ “movement toolbox.”
To make them more athletic we also need to help them apply it in their sport. To develop the ability to know when to use those tools and be able to do so at a moment’s notice. This ability separates a great athlete on the field from one who is merely great in the gym.

Velocity Sports Performance’s “Progressive Training Method”: Teach, Train, and Apply

Teach: Our coaches first introduce movement techniques to our athletes. We explain the biomechanics that make a particular movement efficient.
Train: Next we provide series of exercises or drills for athletes to repeatedly practice specific movement skills. we might also add resistance, or an element to influence their physiology.
Apply: Once they have a new movement skills in their tool box, then we explore. Velocity coaches create opportunities for them to explore their movement skills in guided. This is done with non-rehearsed, random, and chaotic situations. Things like mirror drills, reaction drills, or game-like scenarios.
Agility may be hard to measure, but we can still help our athletes get better at it. First, as their coaches, we need to study which movement skills are critical for success in our athletes’ sports – only then can we decide which drills our athletes need to practice and master. This is the “train” part of the Velocity system.
Next, we teach them to apply their new skills by taking them out of rehearsed patterns. We put them in situations that mimic game-like opportunities to use whichever movement skill we trained that day. The importance of this step cannot be overstated.
If we skip it, all we have done is teach our athletes to be better at drills, and we have done nothing to make them move better on the field, court, ice, pitch, or any other arena of competition.

Seeing Agility

Are your athletes becoming more agile because of your coaching? You may not see it during the training session, but you will know it when you see them compete. We cannot put in the hard work required for our athletes to improve, but we can always support them by planning ahead and structuring our coaching sessions the right way.
Do you want to know more about how athletes get faster? Take a look at The Ultimate Guide To Speed Training.