Youth Speed Training Tips: Technical + Applied Drills

Speed Training Drill for Proper Direction
The Velocity Speed Formula (read more about it hereuses proven speed training drills to make athletes faster.  However, it’s much more than just drills.  How different drills are combined affects learning.  For youth speed training to carry over to the game you need to learn this tip in the video.

Velocity Speed Formula

Combining technical and applied drills is an important part of youth speed training.  It’s one way we make sure athletes can apply the speed in the game.  This is just one part of the Velocity Speed System.  It’s built on the science of biomechanics and motor learning.  Learn more about the Velocity Speed Formula

Velocity Speed Training Drills: Optimal Range of Motion

Speed Training Drill for Proper Direction
The Velocity Speed Formula (read more about it hereuses proven speed training drills to make athletes faster.  Whether its elite speed training or youth speed training, the Formula always has the same 4 parts;
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

Apply Force in the OPTIMAL RANGE OF MOTION

The range of motion your limbs and joints travel through while sprinting is a Goldilocks scenario; not too big, not too small, but just right.

If the limbs are traveling through too big a range of motion you may be wasting time and energy.

If the range is too small, you wont generate the power you need.

Optimal range of motion is developed by acquiring good motion through stretching and mobility work combined with dynamic mobility drills.  Below we have a few of the drills that help athletes develop the optimal range of motion for sprinting.

RELATED: Sport Specific Types of Strength

Kneeling Arm Action Drill

This drill to reinforce arm action has been around for a long time.  The reason; it still helps athlete work on understanding the arm swing range of motion while running.  One of the keys is that you want athletes using this drill to feel good spinal alignment with relaxed shoulders and neck.

Use this drill through various speeds, push faster until form, coordination or body position start to suffer.  Then back the speed down and regain the form.  Make sure the motion is from the shoulder.  No “karate-chop” actions at the elbows.

 

Fast Leg Drill

There are many useful variations of the Fast Leg speed drill and multiple benefits.  The one we are focusing on here is the range of motion.  Specifically the range of motion when the leg recovers from behind the body and the thigh lifts in front.  The higher the thigh lift, the more power the drive down and back can be.

This drill breaks up the sprinting motion so athletes can focus on the technical aspects.  As always, great core posture is important.

Velocity Speed Formula

Both of these are important speed training drills to help athletes ability to apply force in the proper direction. These drills reinforce basics physics so athletes can accelerate faster.

RELATED: Velocity Coaches Favorite Speed Drills

Velocity Speed Training Drills: Proper Direction

Speed Training Drill for Proper Direction
The Velocity Speed Formula (read more about it hereuses proven speed training drills to make athletes faster.  Whether its elite speed training or youth speed training, the Formula always has the same 4 parts;
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

Apply Force in the Proper Direction

Force is a vector which means it has a direction as well as quantity.  Efficient and effective movement requires not just the right amount of force, but applied in the right direction.

Proper direction is achieved through the right motor pattern (technique) and the stability of the body to apply it that way.  When the structures of joints, muscles and tendons aren’t up to the task, we have what we call “energy leaks.”

Below we share 2 useful drills that help you develop your PROPER DIRECTION qualities.  These drills are designed to reinforce and help the athlete self-regulate the direction they apply force to the ground.

RELATED: Sport Specific Types of Strength

Harness Resisted Sprints for Acceleration

To accelerate an athlete need to apply more force horizontally.  Thats how they increase their movement velocity. This drill reinforces horizontal force application.

The harness allows additional horizontal force to be applied to the athlete. Using a belt, it’s applied near the center of mass to be more biomechanically correct.  As the athlete feels that added force, they will tend to automatically apply force in a more horizontal direction

 

Wall Drills

This is a classic speed training drill that has survived the test of time.

Trying to drive the legs backward and push into the wall reinforces the horizontal force direction for acceleration.

To project your center of mass in the air high enough for the rope to go around twice, you need to apply a big enough force.

It’s very effective but has a problem; it get boring quickly.  So make sure you use it as a prep or reinforcement drill.  Don’t do it for a long time.  It’s also bets used in quick contrast with a drill where the athlete gets to apply that force moving and reinforce the proper direction.

Velocity Speed Formula

Both of these are important speed training drills to help athletes ability to apply force in the proper direction. These drills reinforce basics physics so athletes can accelerate faster.

RELATED: Velocity Coaches Favorite Speed Drills

3 Biggest Myths about Soccer Speed

soccer speed

When comes to developing soccer speed in players, we all know why it’s important. Speed wins games.  Coaches want it, players respect it, and spectators cheer for it. Unfortunately, speed training for soccer is often misunderstood.  In years of working with everything from AYSO to National teams, here are the 3 biggest myths we hear about soccer specific speed.

Only speed with the ball matters

Of course being quick with the ball in your possession is going to be a huge part of soccer.  That’s skill.  That’s the point.  However, if you don’t recognize what happens without the ball, you’re missing most of the game.

First of, most of the time players don’t have the ball.  Just do the math; 90 minute game, 20 field players, if they had it equal time (which of course they don’t) that’s 4.4 minutes or 5% of the time. So even if you’re a player who gets a lot more possession, you’re going to spend the majority of time without the ball.

Then you have to think about how you get the ball.  Beating an opponent to it and creating an open space with a run both can require speed.

Finally, while moves in small tight spaces, may require more quickness form you, if you’re moving in open space, you cant moving any faster with the ball than your body can go.  Your sprinting speed is your limit.

Bottom line, if you want to be a fast player, develop your speed. Period.

Fast players are born that way

Decades ago many coaches would say “you cant teach speed” like there was a simple genetic lottery to have it or not.  Not true.

Not it is true you need some genetic qualities to have world class, 100m gold medal speed.  If you didn’t have the right grandparents, all the training in the world might not get you there.

However speed is a complex motor skill that involves both motor control and force production capabilities.  Both of those can be taught and improved through good coaching and training.  Sped is a skill and can be taught.

If you want to get an advantage over the competition at every level, than you need to maximize your speed.  That means training the movement skills and the force production abilities.

Running sprints will make players fast

Too often coaches, players and parents think they are doing speed training.  After all, the players are running as fast as they can doing those sprints at practice.

While running at full effort is an important part of developing speed, its not a winning formula.

The formula to improve speed is The Big 4.  The four factors you can train and teach to improve.  They are;

  1. Generating a big force to propel the body
  2. Applying that force in a very small ground contact time
  3. Applying the force in the Proper Direction
  4. Moving the body through an Optimal Range of Motion

These can all be taught using advanced motor control and neuro-developmental techniques along with proper functional strength training and mobility development

RELATED: See How Velocity Simplifies the Biomechanics of Speed

Do You Want To Be Faster?

If you’ve fallen into one of these traps, you’re not alone.  The good news is that you can get an edge on the competition by breaking free and  taking control of how fast you will be out on the soccer field.

Velocity Speed Training Drills: Small Time

plyometric drills for speed
The Velocity Speed Formula (read more about it hereuses proven speed training drills to make athletes faster.  Whether its elite speed training or youth speed training, the Formula always has the same 4 parts;
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

Apply Force Faster for Speed

Below we share 2 useful drills that help you develop your SMALL TIME qualities.  In essence, these are plyometric drills.  Drills where you have a ground contact that stretched your muscles, followed quickly by a contraction of those same muscles.

One of the benefits of this type of plyometric action is that parts of your muscles act like springs.  When you land they compress.  When you push they spring back and help you.

This is what we term Reactive Strength and is key for any athlete that wants to be fast.

RELATED: Sport Specific Types of Strength

Hurdle Hop Speed Training Drills

Hurdle hops are a very popular drill for speed training with good reason; they are effective.  The key is to do them well.

When your goal is to develop your reactive abilities, you need to focus on getting off the ground quick.  At the same time, you need to apply force.  Make sure you try to really project your body high into the air on each.  The speed is on the ground contact, not the movement forward.

Jump Rope Double-Unders

This is a time tested classic for foot speed.  It’s hardly new, but it works.  It should be a fundamental piece of every youth speed training program.  It’s basically a plyometric drill for speed.

To project your center of mass in the air high enough for the rope to go around twice, you need to apply a big enough force.

If you don’t want to get smacked with the rope, you need to apply that force quickly.

Double-unders are what we call a “self-limiting drill’.  This means that you really can’t perform it with bad technique.  Maybe you can get a few in without doing it well, but to string them together you need good form.  You will be in the proper body position, have the right range of motion and have a small time on the ground.

Velocity Speed Formula

Both of these are important speed training drills to develop an athletes ability to apply force quickly. They are great plyometric drills that work.   Execute them explosively and with great body position to be effective. If you perform them well and often, you’ll see the results transfer to game speed.

Velocity Speed Training Drills: Big Force

speed training drills
The Velocity Speed Formula (read more about it hereuses proven speed training drills to make athletes faster.  Whether its elite speed training or youth speed training, the Formula always has the same 4 parts;
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

Getting Stronger for Speed

This article is focused on 2 important drills that help to develop your BIG FORCE qualities.  Although these are not weight room drills, strength training for speed development is important.  To be fast, athletes need to train in the weight room and do it properly.

These drills also develop some of the strength qualities you need to improve your speed.  They are very specific to building strength for speed.  They build speed strength and have a high carryover from training to application.

Box Blast Exercise

The Box Blast is a speed training drill that lets you focus on maximum power.  The basic alignment of the limbs and torso is similar to the acceleration phase of sprinting.  Most importantly, the muscle motion is a piston-like action which we observe the acceleration phase.

Heavy Sled Runs

This is another greater drill that is highly specific to strength for speed.  Speed training drills like this need to be executed with great form and body alignment.

Velocity Speed Formula

Both of these are important speed training drills to develop the force production capabilities of athletes.  Execute them explosively and with great body position to be effective. If you perform them well and often, you’ll the results transfer to game speed.

Velocity Speed Formula: Big Force

Strength training for speed
Understanding strength training for speed is important for coaches and athletes.  Previously I’ve covered why the Big 4 is such an effective “formula” for speed (read it here). It’s how we analyze movement, teach and come up with drills and programs. No advanced degree in physics or neuroscience necessary. The formula is:
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion
Let’s delve deeper and take a look at the first element; Big Force. It has driven why and how we incorporate certain drills and resistance exercises. It is basic Newtonian physics; you push the ground one way and it pushes you the opposite direction.

How Much Strength Do You Need?

It’s a good question. How much strength do you really need?
 
Observing the difference in muscular development between a sprinter and a marathoner should give you a clue. Sprinter’s have way more muscle mass. This doesn’t mean you need to just be bigger or become a powerlifter. But biomechanics research does tell us very large forces have to be applied by the athlete to move fast.
 
You need to produce a Big Force. The strength you need is developed by:
  • sprinting fast,
  • using specific sprint and plyometric drills,
  • and getting in the weight room.

What Is Strength?

For an athlete, strength means a lot more than just how much weight you can lift. There are 6 different strength qualities we train. Focusing on specific strength qualities is how we improve speed.
 
Strength is how much you can lift, right?
 
Nope.
 
How much you can lift is a great expression of some strength or power qualities. As an Olympic weightlifting coach, I’ve helped athletes go from starting the sport to be on the US National team. I love the strength and power (Strength x Speed) expressed through weightlifting.
 
Then there’s powerlifting. Squat, deadlift, bench. Many of the coaches on our staff have been competitive powerlifters as well as my friends. These feats of strength are really impressive and it’s a great expression of Max Strength.
 
Neither is the definition of strength though. They are just great examples of 2 of our 6 specific qualities. Going in-depth is beyond the scope of this writing but here are our 6 types of strength:
  1. Maximum Strength: think powerlifting and even sub max weights. It’s about force and speed is not important.
  2. Eccentric Strength: Think shock absorbers and brakes. When you land, stop, cut, etc… your muscles contract while lengthening. This is an eccentric strength action.
  3. Power (Strength-Speed): Moving fast against a larger load. Think weightlifting or football lineman pushing each other.
  4. Power (Speed- Strength): Moving fast against a light load. Throwing a baseball, jumping, throwing a punch. Moving it fast matters.
  5. Rate of Force Development: How fast you can turn on the muscles. Think of a drag racer analogy. It’s how fast they can go from 0 to speed that matters.
  6. Reactive Strength: Combine a fast & short eccentric stretch, immediately followed by RFD and you have reactive. This is the springy quick step you see in fast footwork.

What Type of Strength Do You Need?

If there are different types of strength, which help you apply a BIG FORCE into the ground? Which will help you get faster?
 
The answer lies in part on what you are trying to improve. The answer may be different if we are talking about acceleration compared to maximum velocity sprinting. And those may be different than a change of direction.

Acceleration

This is the phase where you are starting and gaining speed. During this phase, the mechanics lead to slightly longer ground contact times. This added time in contact with the ground lets you build up force to push harder. You still have only between 200 – 400 milliseconds, so Max Strength will help, but Speed-Strength is key.
 
This phase is also characterized by large horizontal and vertical forces. This means that when training strength, you need strength exercises for both pushing backward and down. A good dose of weight room basics like lunges, power cleans help. Combined with vertical and horizontal plyometrics, along with sled work, the results get better.

Maximum Velocity Mechanics

During this phase, you are upright and moving fast. Your foot needs to hit the ground with high forces but it’s not there for long. Elite sprinters are in contact less than 100 milliseconds. You need Max Strength enough to handle the high loads 1.5 – 2.5 times body weight on each leg. You also need to be able to absorb the impact and reapply force quickly. That’s Reactive Strength.
 
Since you’ve already accelerated, in this phase the forces are mostly vertical. They keep you from falling into the ground. Therefore, weight and plyometric exercises like squats, reactive hurdle jumps, and even jump rope double-unders all contribute.

Change of Direction

When changing direction, the type of strength can depend on how sharp of a cut you make. One situation is a major change of direction where you slow down and re-accelerate. This requires a lot of Eccentric Strength and Strength-Speed. On the other hand, if it’s a quick cut without slowing down or a big range of motion, then it’s more about Reactive Strength and Speed-Strength.
 
Both these are going to benefit from a mix of weight room and plyometrics. The weight room will include strength exercises and Olympic lifts for power. The plyometrics are going to need to focus on developing horizontal and lateral forces.

Technical Sprint Drills for Strength Development

There is a big misunderstanding of technical speed drills. Most people see a technical drill and naturally believe it’s to develop technique. It makes sense after all, but there is so much more.
 
Many “technique” drills in speed training are just as important to developing Big Force as the weight room. By refining an athlete’s technique, they become more efficient with the strength they have. They learn to apply it better.
 
Often many speed drills are really a plyometric exercise themselves. They require putting a lot of force into the ground, in the proper direction. They are in fact the most speed specific form of strength training there is.

Strength Training for Speed

Having good technique and good power output is key to being fast. It’s not an either/or situation, it’s an AND sitution. You need technique AND strength. In every athlete’s development, they go through stages. Sometimes their technique gets ahead of their strength, and vice versa. Make sure you stay on track by developing both and working with a knowledgeable coach who can determine if you need one or the other more.

Is Your Agility Important for Soccer?

Soccer Agility

Is Your Agility Important for Soccer?

Sprinting speed is very important, but soccer isn’t a track meet. It’s not a linear game, and elite soccer players have great agility in addition to blazing straight-ahead speed.
 
We divide agility into two key components—quickness and change of direction. Sprinting speed is great, but if you can’t change direction, you’re going to get burned.

Velocity Speed Formula

The Velocity Speed Formula doesn’t apply only to linear sprinting. It also applies to multi-directional movements. The motor control may be different, but Newton’s Laws of Motion still apply, no matter what direction you are traveling.  The Velocity Speed Formula has 4 components;
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

RELATED: The Velocity BIG 4 Speed Formula

There are differences in how we apply the Formula with agility compared to sprinting. When we compare BIG FORCE, the magnitude may be different, as might the type of muscle contractions.
 
For agility, SMALL TIME and PROPER DIRECTION usually become more important. When it comes to OPTIMAL RANGE OF MOTION, it’s usually smaller in agility than in sprinting.
 
Same scientifically based formula, different types and values going into it.

Quickness

You know the feeling you get watching elite players with incredible quickness? Their movements are crisp, precise and lightning fast. They are able to keep their bodies in total control while making moves.
 
Lightning-fast movements made in 1 or 2 steps can make all the difference when reacting to an opponent, or leaving one on the ground.
 
When we consider Quickness, the emphasis moves away from BIG FORCE and changes to SMALL TIME, PROPER DIRECTION and OPTIMAL RANGE OF MOTION.
 
Body control and balance are big parts of true athletic quickness. Without them, you are like a fish out of water, flailing ineffectively. Athletic quickness requires that you have the balance to keep your body in control. That you can apply ground reactions forces effectively to move you in the PROPER DIRECTION.
 
This becomes even more evident in soccer, where many of your moves are made with a ball at your feet. You must have excellent single-leg balance, stability and quickness. This let you forces to your body for movement and still maintain good touch on the ball.
 
When it comes to quickness and your footwork, smaller, not bigger movements, are usually the OPTIMAL RANGE OF MOTION. That’s because you need your feet close to the ground to react and make movements quicker.
 
The ground reaction force is smaller, but quicker and more reactive. When most people think about strength, they imagine how much someone can lift on a barbell. However, that is only one type of strength.
 
The Velocity Sports Performance methodology uses six strength types to make athletes more effective in the game. To improve quickness we are more focused on developing Rate of Force Development and Reactive Strength.
 

Rate of Force Development

This type of strength is all about how fast you can turn on your muscles and generate force. In biomechanics, it’s called Rate of Force Development (RFD).
Player A may be stronger when squatting with a barbell; but since Player B can turn his muscles on quicker, he’ll start moving faster than Player A. As shown above, when it comes to quickness, it’s not how much force you can produce, but how quickly you can produce it.

Reactive Strength

If an athlete is already moving one way, he or she has to apply force to re-direct his or her momentum. This is Newton’s First Law of Motion. Paraphrased, an object will keep going in the same direction unless acted on by another force. Exercising agility and quickness, an athlete must apply this other force.
During quick agility movements, the foot’s contact with the ground first requires an eccentric muscle action. Eccentric actions occur when the muscle is exerting force one way to resist the athlete’s momentum.
 
This rapid eccentric force to change momentum is immediately followed by a high RFD to redirect the athlete. Rapid eccentric force coupled with a high RFD in a small time are what we biomechanically call Reactive Strength.

What You Need

Here are some examples of how you might improve your quickness.
 
Reactive Strength and RFD
  • Single-Leg Hop Back
  • Ladder Drills – Backward Single-Leg
Body Control and Dynamic Balance
  • Hexagon Agility
  • Single-Leg Med Ball

Change of Direction

Soccer isn’t linear; it constantly changes from one part of the field to another. You have to mark a player who is going one direction, then another. As a soccer player, you need to be good at both.
 
If the angle of the change is less than 90 degrees, it’s an obtuse (quick) cut. If it’s more than 90 degrees, it’s an acute (sharp) cut. You want to think about this, because the SPEED formula is a little different for each. As a soccer player, you need to be good at both.
 
Both types of change of direction are common in soccer. They are among the most demanding actions for your muscles and for your energy systems. They also can make or break key moments. If you can’t shake a defender when attacking, or can’t stay glued to the attacker when defending, you lose.

Quick Cut

The quick cut usually happens at speed. You’re dribbling down the field and want to make a small change to throw the defender off balance or get to an open space. Or, you may be defending a tracking a player as he or she moves across the field. He or she is trying to lose you, and you need to make small cuts to stay with them.

Sharp Cut

Sharp cuts also happen. You’re defending a player with the ball racing in one direction. He or she makes a quick stop, pulls the ball back and goes the other way.  You’d better make a fast sharp cut to stay with him or her.

The Formula for Change of Direction

The Speed Formula is different for BIG FORCE and SMALL TIME in cutting movements. The quick cut is just that—quick, meaning the time on the ground is smaller and the angle change (and therefore the amount of force applied) is smaller.
 
This requires Reactive Strength. In the sharp cut, you have to absorb a lot more momentum to stop going one way, then reapply large force to re-accelerate in a new direction. This requires a combination of Eccentric Strength and Speed-Strength.
 
The Formula is also different in the OPTIMAL RANGE OF MOTION. The sharp cut has to absorb more momentum eccentrically. This means the knees and hips will bend more and/or you will take more steps, whereas the quick cut should only see a little bend at the knees and hips.

Improving Change of Direction

Change of Direction is about the physics of momentum. For best results, you need to understand how to apply the Speed Formula properly. Here are some examples of exercises you can use;
Strength Needed for Agility
Eccentric Strength
  • Kettlebell Swings
  • Single-Leg Hurdle Hops and Stick
  • Ladder Lowering
Effective Mechanics
  • Activate Base Drills
  • Inside Box Drill
  • Wall Crossover Drills
  • Carioca Quickstep

Soccer Agility Makes You A Better Player

True soccer game speed means linear speed and agility. Whether it’s the quickness exhibited with fast footwork and dynamic moves, or rapid changes of direction, you can’t be lacking. These are skills that can be trained through better movement mechanics and by improving the right physical qualities. Take control of your game speed and improve to succeed.

How to get an edge: better recovery between soccer games

faster recovery between soccer games
Part of being a fit soccer player is being prepared to perform at 100 percent. Making sure you take care of recovery will ensure your hard work does not go to waste. For faster recovery between soccer games you need a solid recovery plan.
 
A recovery plan means you will be able to train harder, maintain peak performance longer and prevent injury. Don’t fall into a common trap, recovery is not only rest.
 
Recovery is the work you do after you play to prepare yourself for your next challenge. When done right, it gives your body the edge to perform better, for longer.
 
Great recovery equals optimal performance potential. Thats means you can be your best when you are ready to compete.

Soccer Recovery Checklist

  • REFUEL
  • FLUSH
  • RESET
  • MOBILIZE
  • SOAK
  • RELAX
  • SLEEP

Refuel:

Recovery begins as soon as your workout ends. Start with a recovery shake within 15-20 minutes to replenish your energy stores. A good shake will have carbohydrates and rebuild your damaged tissue with protein.

Don’t make a mistake and skip the carbs. Soccer players expend a lot of energy during a game covering the field. You need to refill your energy stores with carbs for the next game.

 

Flush:

If you just go and sit down on the field, or in the car on the way home you are hurting yourself. You haven’t given your muscles a chance to move fresh blood and pump out the waste products.

Spend 7 – 10 minutes with a light jog after the game or practice. By working at low intensity you will clear metabolic waste accumulated in your muscles.
 

Reset:

When you get home, spend 5-10 minutes focusing on resetting your muscle tissue. This can include foam rolling and trigger point work on target areas and massage. The front of the thighs and calf muscles, along with the bottom of your foot are good targets.
 

Mobilize:

After you reset the muscle tissue, you have to mobilize it so it stays supple and recovers quickly. Techniques can include active isolated stretching, yoga or band stretching.
 
Make sure to focus on the lower leg and hip flexors. They are areas that get stressed by the kicking and sprinting during a soccer game.
 

Soak:

Sitting immersed in water can do some great things for recovery. The most common question for immersion is hot or cold? The answer depends on the timing of your next bout of training.
 

If you’re not training again until the next day, go hot (hot tub, Epsom salt bath). If you’re training again within the same day, go cold (ice tub, 10-12 minutes).

Relax:

One of the most important parts of recovery is the ability to shut down. It’s easy to get fired up, but the best soccer athletes can power down just as quickly. Meditation, deep breathing and massage are all techniques to help bring you back down, and let your body do its work rebuilding.

In a tournament setting, with multiple games in a day, spending even 3-5 minutes to calm your mind can help your body recover faster.

Sleep:

The most powerful recovery method for humans is sleep. It helps both your body and mind. Getting 8-10 hours of quality sleep improves sports performance. Make sure you turn off you phone and electronic devices early, shut out light, and get a good night’s sleep.
 

TRAINING: 3 drills to help you stop on a dime

Better Agility: Stop on a dime

Almost every sport is about more than just running fast or a huge vertical. Pick one, and we’ll bet that most of the action happens around changing direction. For the majority of the athletes with whom we work at Velocity around the country, this means they have to be just as good at stopping as they are at starting. Without good brakes, they simply can’t control their speed.

RELATED: Do Athletes Need A Bigger Engine or Better Brakes?

Three of our coaches have chosen their favorite drill to help their athletes have strong, fast brakes so that they can stop on a dime.

Level Lowering Ladder

One of the most basic skills an athlete needs to change direction is the ability to maintain proper position during deceleration. One of the tools we like to use at Velocity is the agility ladder because it helps focus the athlete on foot position and accuracy in addition to whatever skills we choose to address that day.

To do these drills, athletes first need to have the coordination to perform basic ladder drills well, such as swizzle, scissor switches, and the icky shuffle. Once the athlete can perform each of these without difficulty, they can modify the drill and pause as they drop their center of mass, stopping themselves in the proper position. The most basic, and therefore most important, positions in sports are the square, staggered, and single leg stance. A mini-band can be placed around the athlete’s knees to create awareness of proper knee position.  If the athlete adds a medicine ball into the drill, they can work on more ballistic/dynamic eccentric movement with a different stimulus.

The athlete needs to lower his/her center of mass to create “triple flexion” in lower extremity joints: hip, knee, and ankle. The center of mass, knee, and ground contact must be in a good alignment to keep the movement safe and efficient.

Most importantly, the athlete must achieve proper hip hinge and dorsiflexion of the ankle. The vast majority of non-contact injuries occur during deceleration, often at knees or ankles. Learning how to absorb (load) force with proper body position (hip hinge, stable knee, and dorsiflexed ankle) will help prevent these injuries.

Springs and Shocks Ladder

The agility ladder is a great tool to help our athletes develop their shocks and springs.

When it comes to speed, athletes need to be springy and quick off the ground. When we talk about “springs,” we mean our athletes’ ability to be faster by using the elastic properties of their muscles.

“Shocks” means having the ability to absorb impact and force so our athletes can stop safely and quickly. This drill emphasizes both abilities and applies to any sport.

How to do the drill:

through the ladder try to be a quick as you can off of the ground. This is where we focus on our springs. When we land we want to land and be under control. The more control we have when decelerating the safer our body will be when changing direction. Most important part of the landing is keeping the body in proper position and not allowing a valgus knee.

Important details to watch are: position and control. We want an athlete to be able to develop the strength and control through the proper range of motion. This is especially important as we begin to add not speed or distance. Do not let athletes progress unless they can properly and effectively let control their landing for at least 2 seconds.

Resisted Deceleration March Series

Slowing down is often the most challenging aspect of changing direction and requires the athlete to absorb more force than at any other phase of the movement. This series of drills teaches athletes to keep good posture and body-alignment during deceleration. When we add a concentric movement (explosiveness) immediately followed by a deceleration phase the drill also develops reactive strength and power in the athlete.

How to do the drills:

  1. Position the athlete in a good athletic base with a resistance band or bungee cord around their waist. The partner holding the band increases resistance by pulling toward the direction where deceleration needs to occur.
  2. The athlete controls their posture while moving toward “the direction of pull”. Their shin is a very important detail and must point away from the direction of pull. This helps their foot dig into the ground and resist the momentum that is trying to keep them moving in their original direction.
  3. The ground contact, knee, and athlete’s center of mass should be in alignment and proper posture maintained.
  4. If you want to incorporate an explosive moment, have the athlete perform any form of change-of-direction movement, such as a lateral push, crossover step, or jump.

Important details to watch are:

  1. Make sure the athlete understand the basic athletic base position. Hip-hinge and dorsiflexion of the ankles are very important.
  2. The level resistance needs to be appropriate to their strength and ability. You may adjust this by using a different size resistance band or the distance between the athlete and partner.
  3. Ground contact, shin angle, knee position, and the athlete’s center of mass stay aligned (away from the direction of pull).
  4. Make sure the athlete is not leaning on the band.
  5. Eccentric control first, then concentric! Make sure your athletes understand how to use the brakes before they hit the gas pedal.