Is Your Agility Important for Soccer?

Sprinting speed is very important, but soccer isn’t a track meet. It’s not a linear game, and elite soccer players have great agility in addition to blazing straight-ahead speed.
 
We divide agility into two key components—quickness and change of direction. Sprinting speed is great, but if you can’t change direction, you’re going to get burned.

Velocity Speed Formula

The Velocity Speed Formula doesn’t apply only to linear sprinting. It also applies to multi-directional movements. The motor control may be different, but Newton’s Laws of Motion still apply, no matter what direction you are traveling.  The Velocity Speed Formula has 4 components;
  • Big Force
  • Small Time
  • Proper Direction
  • Optimal Range of Motion

RELATED: The Velocity BIG 4 Speed Formula

There are differences in how we apply the Formula with agility compared to sprinting. When we compare BIG FORCE, the magnitude may be different, as might the type of muscle contractions.
 
For agility, SMALL TIME and PROPER DIRECTION usually become more important. When it comes to OPTIMAL RANGE OF MOTION, it’s usually smaller in agility than in sprinting.
 
Same scientifically based formula, different types and values going into it.

Quickness

You know the feeling you get watching elite players with incredible quickness? Their movements are crisp, precise and lightning fast. They are able to keep their bodies in total control while making moves.
 
Lightning-fast movements made in 1 or 2 steps can make all the difference when reacting to an opponent, or leaving one on the ground.
 
When we consider Quickness, the emphasis moves away from BIG FORCE and changes to SMALL TIME, PROPER DIRECTION and OPTIMAL RANGE OF MOTION.
 
Body control and balance are big parts of true athletic quickness. Without them, you are like a fish out of water, flailing ineffectively. Athletic quickness requires that you have the balance to keep your body in control. That you can apply ground reactions forces effectively to move you in the PROPER DIRECTION.
 
This becomes even more evident in soccer, where many of your moves are made with a ball at your feet. You must have excellent single-leg balance, stability and quickness. This let you forces to your body for movement and still maintain good touch on the ball.
 
When it comes to quickness and your footwork, smaller, not bigger movements, are usually the OPTIMAL RANGE OF MOTION. That’s because you need your feet close to the ground to react and make movements quicker.
 
The ground reaction force is smaller, but quicker and more reactive. When most people think about strength, they imagine how much someone can lift on a barbell. However, that is only one type of strength.
 
The Velocity Sports Performance methodology uses six strength types to make athletes more effective in the game. To improve quickness we are more focused on developing Rate of Force Development and Reactive Strength.
 

Rate of Force Development

This type of strength is all about how fast you can turn on your muscles and generate force. In biomechanics, it’s called Rate of Force Development (RFD).
Player A may be stronger when squatting with a barbell; but since Player B can turn his muscles on quicker, he’ll start moving faster than Player A. As shown above, when it comes to quickness, it’s not how much force you can produce, but how quickly you can produce it.

Reactive Strength

If an athlete is already moving one way, he or she has to apply force to re-direct his or her momentum. This is Newton’s First Law of Motion. Paraphrased, an object will keep going in the same direction unless acted on by another force. Exercising agility and quickness, an athlete must apply this other force.
During quick agility movements, the foot’s contact with the ground first requires an eccentric muscle action. Eccentric actions occur when the muscle is exerting force one way to resist the athlete’s momentum.
 
This rapid eccentric force to change momentum is immediately followed by a high RFD to redirect the athlete. Rapid eccentric force coupled with a high RFD in a small time are what we biomechanically call Reactive Strength.

What You Need

Here are some examples of how you might improve your quickness.
 
Reactive Strength and RFD
  • Single-Leg Hop Back
  • Ladder Drills – Backward Single-Leg
Body Control and Dynamic Balance
  • Hexagon Agility
  • Single-Leg Med Ball

Change of Direction

Soccer isn’t linear; it constantly changes from one part of the field to another. You have to mark a player who is going one direction, then another. As a soccer player, you need to be good at both.
 
If the angle of the change is less than 90 degrees, it’s an obtuse (quick) cut. If it’s more than 90 degrees, it’s an acute (sharp) cut. You want to think about this, because the SPEED formula is a little different for each. As a soccer player, you need to be good at both.
 
Both types of change of direction are common in soccer. They are among the most demanding actions for your muscles and for your energy systems. They also can make or break key moments. If you can’t shake a defender when attacking, or can’t stay glued to the attacker when defending, you lose.

Quick Cut

The quick cut usually happens at speed. You’re dribbling down the field and want to make a small change to throw the defender off balance or get to an open space. Or, you may be defending a tracking a player as he or she moves across the field. He or she is trying to lose you, and you need to make small cuts to stay with them.

Sharp Cut

Sharp cuts also happen. You’re defending a player with the ball racing in one direction. He or she makes a quick stop, pulls the ball back and goes the other way.  You’d better make a fast sharp cut to stay with him or her.

The Formula for Change of Direction

The Speed Formula is different for BIG FORCE and SMALL TIME in cutting movements. The quick cut is just that—quick, meaning the time on the ground is smaller and the angle change (and therefore the amount of force applied) is smaller.
 
This requires Reactive Strength. In the sharp cut, you have to absorb a lot more momentum to stop going one way, then reapply large force to re-accelerate in a new direction. This requires a combination of Eccentric Strength and Speed-Strength.
 
The Formula is also different in the OPTIMAL RANGE OF MOTION. The sharp cut has to absorb more momentum eccentrically. This means the knees and hips will bend more and/or you will take more steps, whereas the quick cut should only see a little bend at the knees and hips.

Improving Change of Direction

Change of Direction is about the physics of momentum. For best results, you need to understand how to apply the Speed Formula properly. Here are some examples of exercises you can use;
Strength Needed for Agility
Eccentric Strength
  • Kettlebell Swings
  • Single-Leg Hurdle Hops and Stick
  • Ladder Lowering
Effective Mechanics
  • Activate Base Drills
  • Inside Box Drill
  • Wall Crossover Drills
  • Carioca Quickstep

Soccer Agility Makes You A Better Player

True soccer game speed means linear speed and agility. Whether it’s the quickness exhibited with fast footwork and dynamic moves, or rapid changes of direction, you can’t be lacking. These are skills that can be trained through better movement mechanics and by improving the right physical qualities. Take control of your game speed and improve to succeed.

Leave a Comment